These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 31052841)
1. Discontinuous Galerkin time domain analysis of electromagnetic scattering from dispersive periodic nanostructures at oblique incidence. Bao H; Kang L; Campbell SD; Werner DH Opt Express; 2019 Apr; 27(9):13116-13128. PubMed ID: 31052841 [TBL] [Abstract][Full Text] [Related]
2. Continuous-discontinuous Galerkin time domain (CDGTD) method with generalized dispersive material (GDM) model for computational photonics. Ren Q; Bao H; Campbell SD; Prokopeva LJ; Kildishev AV; Werner DH Opt Express; 2018 Oct; 26(22):29005-29016. PubMed ID: 30470069 [TBL] [Abstract][Full Text] [Related]
3. Simulation of the nonlinear Kerr and Raman effect with a parallel local time-stepping DGTD solver. Zhang T; Peng Y; Dai Z; Bao H; Xiao Z; Chen X; Ding D Opt Express; 2023 Jan; 31(1):344-354. PubMed ID: 36606971 [TBL] [Abstract][Full Text] [Related]
4. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model. Ren Q; Nagar J; Kang L; Bian Y; Werner P; Werner DH Sci Rep; 2017 May; 7(1):2126. PubMed ID: 28522828 [TBL] [Abstract][Full Text] [Related]
5. Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method. König M; Prohm C; Busch K; Niegemann J Opt Express; 2011 Feb; 19(5):4618-31. PubMed ID: 21369294 [TBL] [Abstract][Full Text] [Related]
6. Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles. Tang G; Panetta RL; Yang P Appl Opt; 2010 May; 49(15):2827-40. PubMed ID: 20490244 [TBL] [Abstract][Full Text] [Related]
7. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces. Deng S Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461 [TBL] [Abstract][Full Text] [Related]
8. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Hesthaven JS; Warburton T Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505 [TBL] [Abstract][Full Text] [Related]
9. Conductive mixed-order generalized dispersion model for noble metals in the optical regime. Mai W; Campbell SD; Werner DH Opt Express; 2021 Sep; 29(19):30520-30531. PubMed ID: 34614775 [TBL] [Abstract][Full Text] [Related]
10. Room acoustics modelling in the time-domain with the nodal discontinuous Galerkin method. Wang H; Sihar I; Pagán Muñoz R; Hornikx M J Acoust Soc Am; 2019 Apr; 145(4):2650. PubMed ID: 31046368 [TBL] [Abstract][Full Text] [Related]
11. Time-domain impedance boundary condition modeling with the discontinuous Galerkin method for room acoustics simulations. Wang H; Hornikx M J Acoust Soc Am; 2020 Apr; 147(4):2534. PubMed ID: 32359313 [TBL] [Abstract][Full Text] [Related]
12. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Paetzold UW; Moulin E; Pieters BE; Carius R; Rau U Opt Express; 2011 Nov; 19 Suppl 6():A1219-30. PubMed ID: 22109618 [TBL] [Abstract][Full Text] [Related]
13. A unified discontinuous Galerkin framework for time integration. Zhao S; Wei GW Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889 [TBL] [Abstract][Full Text] [Related]
14. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media. Zhao S Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222 [TBL] [Abstract][Full Text] [Related]
15. Efficient discontinuous Galerkin scheme for analyzing nanostructured photoconductive devices. Chen L; Sirenko K; Li P; Bagci H Opt Express; 2021 Apr; 29(9):12903-12917. PubMed ID: 33985036 [TBL] [Abstract][Full Text] [Related]
16. Boundary conditions in an integral approach to scattering. Arnoldus HF J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3063-71. PubMed ID: 17106462 [TBL] [Abstract][Full Text] [Related]
17. Structure aware Runge-Kutta time stepping for spacetime tents. Gopalakrishnan J; Schöberl J; Wintersteiger C SN Partial Differ Equ Appl; 2020; 1(4):19. PubMed ID: 32879914 [TBL] [Abstract][Full Text] [Related]
18. Light-opals interaction modeling by direct numerical solution of Maxwell's equations. Vaccari A; Lesina AC; Cristoforetti L; Chiappini A; Crema L; Calliari L; Ramunno L; Berini P; Ferrari M Opt Express; 2014 Nov; 22(22):27739-49. PubMed ID: 25401918 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function. Kim EK; Ha SG; Lee J; Park YB; Jung KY Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847 [TBL] [Abstract][Full Text] [Related]
20. Efficient solution of Maxwell's equations for optical fibers with arbitrary refractive-index profiles. Eoll CK; Goldring T; Lucas TR Opt Lett; 1987 Oct; 12(10):841-3. PubMed ID: 19741891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]