These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31052886)
21. Stable core/shell CdTe/Mn-CdS quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode and their photoelectrochemical properties. Li W; Sheng P; Feng H; Yin X; Zhu X; Yang X; Cai Q ACS Appl Mater Interfaces; 2014 Aug; 6(15):12353-62. PubMed ID: 25010851 [TBL] [Abstract][Full Text] [Related]
22. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction. Crisp RW; Pach GF; Kurley JM; France RM; Reese MO; Nanayakkara SU; MacLeod BA; Talapin DV; Beard MC; Luther JM Nano Lett; 2017 Feb; 17(2):1020-1027. PubMed ID: 28068765 [TBL] [Abstract][Full Text] [Related]
23. Extended photo-response of ZnO/CdS core/shell nanorods fabricated by hydrothermal reaction and pulsed laser deposition. Yang Q; Li Y; Hu Z; Duan Z; Liang P; Sun J; Xu N; Wu J Opt Express; 2014 Apr; 22(7):8617-23. PubMed ID: 24718232 [TBL] [Abstract][Full Text] [Related]
24. Efficient CdTe Nanocrystal/TiO₂ Hetero-Junction Solar Cells with Open Circuit Voltage Breaking 0.8 V by Incorporating A Thin Layer of CdS Nanocrystal. Mei X; Wu B; Guo X; Liu X; Rong Z; Liu S; Chen Y; Qin D; Xu W; Hou L; Chen B Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30104543 [TBL] [Abstract][Full Text] [Related]
25. CdS-encapsulated TiO2 nanotube arrays lidded with ZnO nanorod layers and their photoelectrocatalytic applications. Zhang YN; Zhao G; Lei Y; Li P; Li M; Jin Y; Lv B Chemphyschem; 2010 Nov; 11(16):3491-8. PubMed ID: 20853387 [TBL] [Abstract][Full Text] [Related]
26. High-Efficiency Double Absorber PbS/CdS Heterojunction Solar Cells by Enhanced Charge Collection Using a ZnO Nanorod Array. Yeon DH; Mohanty BC; Lee CY; Lee SM; Cho YS ACS Omega; 2017 Aug; 2(8):4894-4899. PubMed ID: 31457768 [TBL] [Abstract][Full Text] [Related]
28. Enhancing the Performance of Wide-Bandgap Polymer-Based Organic Solar Cells through Silver Nanorod Integration. Waketola AG; Hone FG; Geldasa FT; Genene Z; Mammo W; Tegegne NA ACS Omega; 2024 Feb; 9(7):8082-8091. PubMed ID: 38405528 [TBL] [Abstract][Full Text] [Related]
29. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells. Wang TC; Su YH; Hung YK; Yeh CS; Huang LW; Gomulya W; Lai LH; Loi MA; Yang JS; Wu JJ Phys Chem Chem Phys; 2015 Aug; 17(30):19854-61. PubMed ID: 26159896 [TBL] [Abstract][Full Text] [Related]
30. Influence of Deposition Conditions on Properties of All Sputtered CdS/CdTe Thin-Film Solar Cells. Kim M; Kim D; Shim JP; Kim D; Lee J J Nanosci Nanotechnol; 2016 May; 16(5):5308-11. PubMed ID: 27483922 [TBL] [Abstract][Full Text] [Related]
31. High-performance inverted solar cells based on blend films of ZnO Naoparticles and TiO(2) nanorods as a cathode buffer layer. Li P; Sun C; Jiu T; Wang G; Li J; Li X; Fang J ACS Appl Mater Interfaces; 2014 Mar; 6(6):4074-80. PubMed ID: 24606632 [TBL] [Abstract][Full Text] [Related]
32. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency. Yuan Z; Yin L Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160 [TBL] [Abstract][Full Text] [Related]
33. Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells. Xie J; Guo C; Li CM Phys Chem Chem Phys; 2013 Oct; 15(38):15905-11. PubMed ID: 23945632 [TBL] [Abstract][Full Text] [Related]
34. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells. Chetia TR; Barpuzary D; Qureshi M Phys Chem Chem Phys; 2014 May; 16(20):9625-33. PubMed ID: 24730023 [TBL] [Abstract][Full Text] [Related]
35. Spectral analysis of the effects of 1.7 MeV electron irradiation on the current transfer characteristic of cadmium telluride solar cells. Tian JX; Zeng GG; He XL; Zhang JQ; Wu LL; Li W; Li B; Wang WW; Feng LH Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Apr; 34(4):888-93. PubMed ID: 25007593 [TBL] [Abstract][Full Text] [Related]
36. Nanorods and nanotubes for solar cells. Kislyuk VV; Dimitriev OP J Nanosci Nanotechnol; 2008 Jan; 8(1):131-48. PubMed ID: 18468059 [TBL] [Abstract][Full Text] [Related]
37. Nanowire CdS-CdTe Solar Cells with Molybdenum Oxide as Contact. Dang H; Singh VP Sci Rep; 2015 Oct; 5():14859. PubMed ID: 26439839 [TBL] [Abstract][Full Text] [Related]
38. Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells. Ruankham P; Yoshikawa S; Sagawa T Phys Chem Chem Phys; 2013 Jun; 15(24):9516-22. PubMed ID: 23446342 [TBL] [Abstract][Full Text] [Related]
39. Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells. Loh L; Briscoe J; Dunn S Nanoscale; 2014 Jun; 6(12):7072-8. PubMed ID: 24842152 [TBL] [Abstract][Full Text] [Related]
40. CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells. Li DB; Song Z; Bista SS; Alfadhili FK; Awni RA; Shrestha N; Rhiannon D; Phillips AB; Heben MJ; Ellingson RJ; Yan F; Yan Y Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344645 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]