These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31052897)

  • 1. Portable hyperspectral lidar utilizing 5 GHz multichannel full waveform digitization.
    Malkamäki T; Kaasalainen S; Ilinca J
    Opt Express; 2019 Apr; 27(8):A468-A480. PubMed ID: 31052897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved waveform reconstruction and parameter accuracy retrieval for hyperspectral lidar data.
    Ilinca J; Kaasalainen S; Malkamäki T; Hakala T
    Appl Opt; 2019 Dec; 58(35):9624-9633. PubMed ID: 31873562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter.
    Chen Y; Li W; Hyyppä J; Wang N; Jiang C; Meng F; Tang L; Puttonen E; Li C
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of the Pulse Signal Decay Effect of Full-Waveform Hyperspectral LiDAR.
    Zhang C; Gao S; Niu Z; Pei J; Bi K; Sun G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.
    Li Z; Jupp DL; Strahler AH; Schaaf CB; Howe G; Hewawasam K; Douglas ES; Chakrabarti S; Cook TA; Paynter I; Saenz EJ; Schaefer M
    Sensors (Basel); 2016 Mar; 16(3):313. PubMed ID: 26950126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies.
    Chen Y; Tang J; Jiang C; Zhu L; Lehtomäki M; Kaartinen H; Kaijaluoto R; Wang Y; Hyyppä J; Hyyppä H; Zhou H; Pei L; Chen R
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical system design for a hyperspectral imaging lidar using supercontinuum laser and its preliminary performance.
    Qian L; Wu D; Zhou X; Zhong L; Wei W; Wang Y; Shi S; Song S; Gong W; Liu D
    Opt Express; 2021 May; 29(11):17542-17553. PubMed ID: 34154295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prototype development and evaluation of a hyperspectral lidar optical receiving system.
    Qian L; Wu D; Liu D; Shi S; Song S; Gong W
    Opt Express; 2024 Mar; 32(7):10786-10800. PubMed ID: 38570944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full waveform hyperspectral LiDAR for terrestrial laser scanning.
    Hakala T; Suomalainen J; Kaasalainen S; Chen Y
    Opt Express; 2012 Mar; 20(7):7119-27. PubMed ID: 22453394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents.
    Li W; Niu Z; Sun G; Gao S; Wu M
    Opt Express; 2016 Mar; 24(5):4771-4785. PubMed ID: 29092306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of active multispectral lidar for detecting low reflectance targets.
    Kaasalainen S; Malkamäki T
    Opt Express; 2020 Jan; 28(2):1408-1416. PubMed ID: 32121852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency receiver architecture for resonance-fluorescence and Doppler lidars.
    Smith JA; Chu X
    Appl Opt; 2015 Apr; 54(11):3173-84. PubMed ID: 25967301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer.
    Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z
    Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information content of data measured with a multiple-field-of-view lidar.
    Veselovskii I; Korenskii M; Griaznov V; Whiteman DN; McGill M; Roy G; Bissonnette L
    Appl Opt; 2006 Sep; 45(26):6839-48. PubMed ID: 16926920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing the effect of incident angle on echo intensity acquired by hyperspectral lidar based on the Lambert-Beckman model.
    Qian X; Yang J; Shi S; Gong W; Du L; Chen B; Chen B
    Opt Express; 2021 Mar; 29(7):11055-11069. PubMed ID: 33820225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.
    Qin H; Wang C; Zhao K; Xi X
    PLoS One; 2018; 13(5):e0197510. PubMed ID: 29813094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system.
    Gao F; Li J; Lin H; He S
    Opt Express; 2017 Oct; 25(21):25515-25522. PubMed ID: 29041218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing three-frequency Na, Fe, and He lidars for measurements of wind, temperature, and species density and the vertical fluxes of heat and constituents.
    Gardner CS; Vargas FA
    Appl Opt; 2014 Jul; 53(19):4100-16. PubMed ID: 25089967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground-based lidar for atmospheric boundary layer ozone measurements.
    Kuang S; Newchurch MJ; Burris J; Liu X
    Appl Opt; 2013 May; 52(15):3557-66. PubMed ID: 23736241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multichannel tunable imager architecture for hyperspectral imaging in relevant spectral domains.
    Goenka C; Semeter J; Noto J; Baumgardner J; Riccobono J; Migliozzi M; Dahlgren H; Marshall R; Kapali S; Hirsch M; Hampton D; Akbari H
    Appl Opt; 2016 Apr; 55(12):3149-57. PubMed ID: 27140081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.