These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31053010)

  • 21. Ultrasonically encoded wavefront shaping for focusing into random media.
    Tay JW; Lai P; Suzuki Y; Wang LV
    Sci Rep; 2014 Jan; 4():3918. PubMed ID: 24472822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing.
    Hu L; Hu S; Li Y; Gong W; Si K
    J Biophotonics; 2020 Jan; 13(1):e201900245. PubMed ID: 31622537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation.
    Liu Y; Ma C; Shen Y; Shi J; Wang LV
    Optica; 2017 Feb; 4(2):280-288. PubMed ID: 28815194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media.
    Feng BY; Guo H; Xie M; Boominathan V; Sharma MK; Veeraraghavan A; Metzler CA
    Sci Adv; 2023 Jun; 9(26):eadg4671. PubMed ID: 37379386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields.
    Yu Z; Li H; Zhong T; Park JH; Cheng S; Woo CM; Zhao Q; Yao J; Zhou Y; Huang X; Pang W; Yoon H; Shen Y; Liu H; Zheng Y; Park Y; Wang LV; Lai P
    Innovation (Camb); 2022 Sep; 3(5):100292. PubMed ID: 36032195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light.
    Ruan H; Jang M; Yang C
    Nat Commun; 2015 Nov; 6():8968. PubMed ID: 26597439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation.
    Yang J; Shen Y; Liu Y; Hemphill AS; Wang LV
    Appl Phys Lett; 2017 Nov; 111(20):201108. PubMed ID: 29203931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enabling focusing around the corner in multiple scattering media.
    Reijn SM; Pinheiro FA; Geskus D; Wetter NU
    Appl Opt; 2015 Sep; 54(25):7740-6. PubMed ID: 26368899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light focusing through scattering media via linear fluorescence variance maximization, and its application for fluorescence imaging.
    Daniel A; Oron D; Silberberg Y
    Opt Express; 2019 Jul; 27(15):21778-21786. PubMed ID: 31510248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wavefront shaping through a free-form scattering object.
    Rates A; Lagendijk A; Adam AJL; IJzerman WL; Vos WL
    Opt Express; 2023 Dec; 31(26):43351-43361. PubMed ID: 38178430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).
    Tao X; Lam T; Zhu B; Li Q; Reinig MR; Kubby J
    Opt Express; 2017 May; 25(9):10368-10383. PubMed ID: 28468409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-shot time-reversed optical focusing into and through scattering media.
    Cheng Z; Yang J; Wang LV
    ACS Photonics; 2020 Oct; 7(10):2871-2877. PubMed ID: 34337103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Focusing Coherent Light through Volume Scattering Phantoms via Wavefront Shaping.
    Fritzsche N; Ott F; Pink K; Kienle A
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of focusing through scattering media using the continuous sequential algorithm.
    Thompson JV; Hokr BH; Yakovlev VV
    J Mod Opt; 2016; 63(1):80-84. PubMed ID: 27018179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulation of the spontaneous parametric down-conversion process in space and frequency domains via wavefront shaping.
    Peng Y; Qiao Y; Xiang T; Chen X
    Opt Lett; 2018 Aug; 43(16):3985-3988. PubMed ID: 30106933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media.
    Cui M
    Opt Express; 2011 Feb; 19(4):2989-95. PubMed ID: 21369123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb.
    Wei X; Shen Y; Jing JC; Hemphill AS; Yang C; Xu S; Yang Z; Wang LV
    Sci Adv; 2020 Feb; 6(8):eaay1192. PubMed ID: 32128401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Focusing light through dynamical samples using fast continuous wavefront optimization.
    Blochet B; Bourdieu L; Gigan S
    Opt Lett; 2017 Dec; 42(23):4994-4997. PubMed ID: 29216164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-Invasive Imaging Through Scattering Medium by Using a Reverse Response Wavefront Shaping Technique.
    Sanjeev A; Kapellner Y; Shabairou N; Gur E; Sinvani M; Zalevsky Z
    Sci Rep; 2019 Aug; 9(1):12275. PubMed ID: 31439914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue.
    Horstmeyer R; Ruan H; Yang C
    Nat Photonics; 2015; 9():563-571. PubMed ID: 27293480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.