These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 31053028)
1. Higher efficiency tandem solar cells through composite-cell current matching. Garrison R; Kleiman R Opt Express; 2019 Apr; 27(8):A543-A571. PubMed ID: 31053028 [TBL] [Abstract][Full Text] [Related]
2. Predicted annual energy yield of III-V/c-Si tandem solar cells: modelling the effect of changing spectrum on current-matching. Mathews I; Lei S; Frizzell R Opt Express; 2020 Mar; 28(6):7829-7842. PubMed ID: 32225419 [TBL] [Abstract][Full Text] [Related]
3. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Löper P; Moon SJ; de Nicolas SM; Niesen B; Ledinsky M; Nicolay S; Bailat J; Yum JH; De Wolf S; Ballif C Phys Chem Chem Phys; 2015 Jan; 17(3):1619-29. PubMed ID: 25437303 [TBL] [Abstract][Full Text] [Related]
4. The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study. Liu H; Ren Z; Liu Z; Aberle AG; Buonassisi T; Peters IM Opt Express; 2015 Apr; 23(7):A382-90. PubMed ID: 25968803 [TBL] [Abstract][Full Text] [Related]
5. Highly Efficient Hybrid Polymer and Amorphous Silicon Multijunction Solar Cells with Effective Optical Management. Tan H; Furlan A; Li W; Arapov K; Santbergen R; Wienk MM; Zeman M; Smets AH; Janssen RA Adv Mater; 2016 Mar; 28(11):2170-7. PubMed ID: 26780260 [TBL] [Abstract][Full Text] [Related]
6. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices. Dupré O; Niesen B; De Wolf S; Ballif C J Phys Chem Lett; 2018 Jan; 9(2):446-458. PubMed ID: 29303583 [TBL] [Abstract][Full Text] [Related]
7. Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots. Bi Y; Bertran A; Gupta S; Ramiro I; Pradhan S; Christodoulou S; Majji SN; Akgul MZ; Konstantatos G Nanoscale; 2019 Jan; 11(3):838-843. PubMed ID: 30574637 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells. Feng SW; Lai CM; Tsai CY; Tu LW Nanoscale Res Lett; 2014; 9(1):652. PubMed ID: 25520599 [TBL] [Abstract][Full Text] [Related]
9. Triple-junction hybrid tandem solar cells with amorphous silicon and polymer-fullerene blends. Kim T; Kim H; Park J; Kim H; Yoon Y; Kim SM; Shin C; Jung H; Kim I; Jeong DS; Kim H; Kim JY; Kim B; Ko MJ; Son HJ; Kim C; Yi J; Han S; Lee DK Sci Rep; 2014 Nov; 4():7154. PubMed ID: 25412648 [TBL] [Abstract][Full Text] [Related]
10. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion. Martí A; Luque A Nat Commun; 2015 Apr; 6():6902. PubMed ID: 25902374 [TBL] [Abstract][Full Text] [Related]
11. Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Manzoor S; Häusele J; Bush KA; Palmstrom AF; Carpenter J; Yu ZJ; Bent SF; Mcgehee MD; Holman ZC Opt Express; 2018 Oct; 26(21):27441-27460. PubMed ID: 30469811 [TBL] [Abstract][Full Text] [Related]
12. The Influence of Solar Spectrum and Concentration Factor on the Material Choice and the Efficiency of Multijunction Solar Cells. Micha DN; Silvares Junior RT Sci Rep; 2019 Dec; 9(1):20055. PubMed ID: 31882738 [TBL] [Abstract][Full Text] [Related]
13. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. Dou L; Gao J; Richard E; You J; Chen CC; Cha KC; He Y; Li G; Yang Y J Am Chem Soc; 2012 Jun; 134(24):10071-9. PubMed ID: 22640170 [TBL] [Abstract][Full Text] [Related]
14. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735 [TBL] [Abstract][Full Text] [Related]
15. Design of perovskite/crystalline-silicon monolithic tandem solar cells. Altazin S; Stepanova L; Werner J; Niesen B; Ballif C; Ruhstaller B Opt Express; 2018 May; 26(10):A579-A590. PubMed ID: 29801275 [TBL] [Abstract][Full Text] [Related]
17. Optimization of amorphous silicon double junction solar cells for an efficient photoelectrochemical water splitting device based on a bismuth vanadate photoanode. Han L; Abdi FF; Perez Rodriguez P; Dam B; van de Krol R; Zeman M; Smets AH Phys Chem Chem Phys; 2014 Mar; 16(9):4220-9. PubMed ID: 24452785 [TBL] [Abstract][Full Text] [Related]
18. Effective method to extract optical bandgaps in Si nanowire arrays. Jung JY; Zhou K; Um HD; Guo Z; Jee SW; Park KT; Lee JH Opt Lett; 2011 Jul; 36(14):2677-9. PubMed ID: 21765506 [TBL] [Abstract][Full Text] [Related]
19. Shockley-Queisser triangle predicts the thermodynamic efficiency limits of arbitrarily complex multijunction bifacial solar cells. Alam MA; Khan MR Proc Natl Acad Sci U S A; 2019 Nov; 116(48):23966-23971. PubMed ID: 31719205 [TBL] [Abstract][Full Text] [Related]
20. Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell. Hu Y; Li M; He JJ; LaPierre RR Nanotechnology; 2013 Feb; 24(6):065402. PubMed ID: 23340047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]