These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 31053076)
1. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Jin CC; Zhang JL; Song H; Cao YX Microb Cell Fact; 2019 May; 18(1):77. PubMed ID: 31053076 [TBL] [Abstract][Full Text] [Related]
2. Biotechnological production of betulinic acid and derivatives and their applications. An T; Zha W; Zi J Appl Microbiol Biotechnol; 2020 Apr; 104(8):3339-3348. PubMed ID: 32112133 [TBL] [Abstract][Full Text] [Related]
3. Enhanced acetate utilization for value-added chemicals production in Yarrowia lipolytica by integration of metabolic engineering and microbial electrosynthesis. Huang C; Chen Y; Cheng S; Li M; Wang L; Cheng M; Li F; Cao Y; Song H Biotechnol Bioeng; 2023 Oct; 120(10):3013-3024. PubMed ID: 37306471 [TBL] [Abstract][Full Text] [Related]
4. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Lu Y; Yang Q; Lin Z; Yang X Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761 [TBL] [Abstract][Full Text] [Related]
5. Production of Triterpene Ginsenoside Compound K in the Non-conventional Yeast Yarrowia lipolytica. Li D; Wu Y; Zhang C; Sun J; Zhou Z; Lu W J Agric Food Chem; 2019 Mar; 67(9):2581-2588. PubMed ID: 30757901 [TBL] [Abstract][Full Text] [Related]
6. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae. Czarnotta E; Dianat M; Korf M; Granica F; Merz J; Maury J; Baallal Jacobsen SA; Förster J; Ebert BE; Blank LM Biotechnol Bioeng; 2017 Nov; 114(11):2528-2538. PubMed ID: 28688186 [TBL] [Abstract][Full Text] [Related]
7. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization. Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Yarrowia lipolytica for high-level production of squalene. Liu Z; Huang M; Chen H; Lu X; Tian Y; Hu P; Zhao Q; Li P; Li C; Ji X; Liu H Bioresour Technol; 2024 Feb; 394():130233. PubMed ID: 38141883 [TBL] [Abstract][Full Text] [Related]
9. Advanced Strategies for the Synthesis of Terpenoids in Li ZJ; Wang YZ; Wang LR; Shi TQ; Sun XM; Huang H J Agric Food Chem; 2021 Mar; 69(8):2367-2381. PubMed ID: 33595318 [TBL] [Abstract][Full Text] [Related]
10. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways. Li J; Zhang Y Appl Microbiol Biotechnol; 2014 Apr; 98(7):3081-9. PubMed ID: 24389702 [TBL] [Abstract][Full Text] [Related]
11. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone. Czajka JJ; Nathenson JA; Benites VT; Baidoo EEK; Cheng Q; Wang Y; Tang YJ Microb Cell Fact; 2018 Sep; 17(1):136. PubMed ID: 30172260 [TBL] [Abstract][Full Text] [Related]
12. Enhanced production of amyrin in Yarrowia lipolytica using a combinatorial protein and metabolic engineering approach. Kong J; Miao L; Lu Z; Wang S; Zhao B; Zhang C; Xiao D; Teo D; Leong SSJ; Wong A; Yu A Microb Cell Fact; 2022 Sep; 21(1):186. PubMed ID: 36085205 [TBL] [Abstract][Full Text] [Related]
13. Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in Tang M; Xu X; Liu Y; Li J; Du G; Lv X; Liu L ACS Synth Biol; 2024 Jun; 13(6):1798-1808. PubMed ID: 38748665 [TBL] [Abstract][Full Text] [Related]
14. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Wu Y; Xu S; Gao X; Li M; Li D; Lu W Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047 [TBL] [Abstract][Full Text] [Related]
15. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of Wei LJ; Cao X; Liu JJ; Kwak S; Jin YS; Wang W; Hua Q Appl Environ Microbiol; 2021 Aug; 87(17):e0048121. PubMed ID: 34132586 [TBL] [Abstract][Full Text] [Related]
16. Identification, characterization of two NADPH-dependent erythrose reductases in the yeast Yarrowia lipolytica and improvement of erythritol productivity using metabolic engineering. Cheng H; Wang S; Bilal M; Ge X; Zhang C; Fickers P; Cheng H Microb Cell Fact; 2018 Aug; 17(1):133. PubMed ID: 30157840 [TBL] [Abstract][Full Text] [Related]
17. Engineering the oleaginous yeast Pang Y; Zhao Y; Li S; Zhao Y; Li J; Hu Z; Zhang C; Xiao D; Yu A Biotechnol Biofuels; 2019; 12():241. PubMed ID: 31624503 [TBL] [Abstract][Full Text] [Related]
18. Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae. Wu J; Niu Y; Bakur A; Li H; Chen Q Molecules; 2017 Jun; 22(7):. PubMed ID: 28653998 [TBL] [Abstract][Full Text] [Related]
19. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Liu H; Marsafari M; Wang F; Deng L; Xu P Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Yarrowia lipolytica for high-level production of scutellarin. Zhang P; Wei W; Shang Y; Ye BC Bioresour Technol; 2023 Oct; 385():129421. PubMed ID: 37392967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]