BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31053078)

  • 1. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.
    Lee K; Bang HB; Lee YH; Jeong KJ
    Microb Cell Fact; 2019 May; 18(1):79. PubMed ID: 31053078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Styrene biosynthesis from glucose by engineered E. coli.
    McKenna R; Nielsen DR
    Metab Eng; 2011 Sep; 13(5):544-54. PubMed ID: 21722749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic optimization of styrene biosynthesis in
    Liu C; Men X; Chen H; Li M; Ding Z; Chen G; Wang F; Liu H; Wang Q; Zhu Y; Zhang H; Xian M
    Biotechnol Biofuels; 2018; 11():14. PubMed ID: 29416559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic metabolic engineering of Escherichia coli for the enhanced production of cinnamaldehyde.
    Bang HB; Son J; Kim SC; Jeong KJ
    Metab Eng; 2023 Mar; 76():63-74. PubMed ID: 36639020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation.
    Perez-Zabaleta M; Guevara-Martínez M; Gustavsson M; Quillaguamán J; Larsson G; van Maris AJA
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5627-5639. PubMed ID: 31104101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome engineering of E. coli for improved styrene production.
    Liang L; Liu R; Foster KEO; AlakshChoudhury ; Cook S; Cameron JC; Srubar WV; Gill RT
    Metab Eng; 2020 Jan; 57():74-84. PubMed ID: 31525473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing in situ removal strategies for improving styrene bioproduction.
    McKenna R; Moya L; McDaniel M; Nielsen DR
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):165-74. PubMed ID: 25034182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals.
    Webb JP; Paiva AC; Rossoni L; Alstrom-Moore A; Springthorpe V; Vaud S; Yeh V; Minde DP; Langer S; Walker H; Hounslow A; Nielsen DR; Larson T; Lilley K; Stephens G; Thomas GH; Bonev BB; Kelly DJ; Conradie A; Green J
    Metab Eng; 2022 Jul; 72():133-149. PubMed ID: 35289291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Styrene Production in Genetically Engineered
    Noda S; Fujiwara R; Mori Y; Dainin M; Shirai T; Kondo A
    BioTech (Basel); 2024 Jan; 13(1):. PubMed ID: 38247732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of p-amino-L-phenylalanine (L-PAPA) from glycerol by metabolic grafting of Escherichia coli.
    Mohammadi Nargesi B; Trachtmann N; Sprenger GA; Youn JW
    Microb Cell Fact; 2018 Sep; 17(1):149. PubMed ID: 30241531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis.
    Erian AM; Gibisch M; Pflügl S
    Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production.
    Liu CL; Bi HR; Bai Z; Fan LH; Tan TW
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):239-250. PubMed ID: 30374674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas.
    Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Escherichia coli for high-yield uridine production.
    Wu H; Li Y; Ma Q; Li Q; Jia Z; Yang B; Xu Q; Fan X; Zhang C; Chen N; Xie X
    Metab Eng; 2018 Sep; 49():248-256. PubMed ID: 30189293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the shikimate pathway for microbial production of maleate from glycerol in engineered Escherichia coli.
    Sheng H; Jing Y; An N; Shen X; Sun X; Yan Y; Wang J; Yuan Q
    Biotechnol Bioeng; 2021 May; 118(5):1840-1850. PubMed ID: 33512000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving L-serine formation by Escherichia coli by reduced uptake of produced L-serine.
    Wang C; Wu J; Shi B; Shi J; Zhao Z
    Microb Cell Fact; 2020 Mar; 19(1):66. PubMed ID: 32169078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.