BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31053643)

  • 1. Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient
    Meyer MB; Benkusky NA; Kaufmann M; Lee SM; Redfield RR; Jones G; Pike JW
    J Biol Chem; 2019 Jun; 294(24):9518-9535. PubMed ID: 31053643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression.
    Meyer MB; Pike JW
    J Steroid Biochem Mol Biol; 2020 Feb; 196():105500. PubMed ID: 31629064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Mechanisms Governing Mineral Homeostasis and the Regulation and Maintenance of Vitamin D Metabolism.
    Pike JW; Lee SM; Benkusky NA; Meyer MB
    JBMR Plus; 2021 Jan; 5(1):e10433. PubMed ID: 33553989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic mechanisms controlling renal vitamin D metabolism.
    Meyer MB; Pike JW
    J Steroid Biochem Mol Biol; 2023 Apr; 228():106252. PubMed ID: 36657729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene
    Meyer MB; Benkusky NA; Kaufmann M; Lee SM; Onal M; Jones G; Pike JW
    J Biol Chem; 2017 Oct; 292(42):17541-17558. PubMed ID: 28808057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chromatin-based mechanism controls differential regulation of the cytochrome P450 gene
    Meyer MB; Lee SM; Carlson AH; Benkusky NA; Kaufmann M; Jones G; Pike JW
    J Biol Chem; 2019 Sep; 294(39):14467-14481. PubMed ID: 31439663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid genomic changes by mineralotropic hormones and kinase SIK inhibition drive coordinated renal Cyp27b1 and Cyp24a1 expression via CREB modules.
    Meyer MB; Benkusky NA; Lee SM; Yoon SH; Mannstadt M; Wein MN; Pike JW
    J Biol Chem; 2022 Nov; 298(11):102559. PubMed ID: 36183832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice.
    Kaufmann M; Lee SM; Pike JW; Jones G
    Endocrinology; 2015 Dec; 156(12):4388-97. PubMed ID: 26441239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insights into mineralotropic hormone inter-regulation.
    Pike JW; Lee SM; Meyer MB
    Front Endocrinol (Lausanne); 2023; 14():1213361. PubMed ID: 37441497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of 1,25-dihydroxyvitamin D
    Nishikawa M; Yasuda K; Takamatsu M; Abe K; Nakagawa K; Tsugawa N; Hirota Y; Tanaka K; Yamashita S; Ikushiro S; Suda T; Okano T; Sakaki T
    J Steroid Biochem Mol Biol; 2019 Jan; 185():71-79. PubMed ID: 30031146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosphate, FGF23, and 1,25(OH)2D3.
    Kägi L; Bettoni C; Pastor-Arroyo EM; Schnitzbauer U; Hernando N; Wagner CA
    PLoS One; 2018; 13(5):e0195427. PubMed ID: 29771914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Administration of 25(OH) Vitamin D3 in an Experimental Model of Chronic Kidney Disease in Animals Null for 1-Alpha-Hydroxylase.
    Torremadé N; Bozic M; Goltzman D; Fernandez E; Valdivielso JM
    PLoS One; 2017; 12(1):e0170654. PubMed ID: 28107527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components.
    Lee SM; Riley EM; Meyer MB; Benkusky NA; Plum LA; DeLuca HF; Pike JW
    J Biol Chem; 2015 Jul; 290(29):18199-18215. PubMed ID: 26041780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vitamin D receptor functions as a transcription regulator in the absence of 1,25-dihydroxyvitamin D
    Lee SM; Pike JW
    J Steroid Biochem Mol Biol; 2016 Nov; 164():265-270. PubMed ID: 26323657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro regulation of fibroblast growth factor 23 by 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D synthesized by osteocyte-like MC3T3-E1 cells.
    Ratsma DMA; Muller M; Koedam M; Zillikens MC; van der Eerden BCJ
    Eur J Endocrinol; 2023 Oct; 189(4):448-459. PubMed ID: 37796032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 25(OH)D
    Kikuyama T; Susa T; Tamamori-Adachi M; Iizuka M; Akimoto M; Okinaga H; Fujigaki Y; Uchida S; Shibata S; Okazaki T
    J Steroid Biochem Mol Biol; 2020 May; 199():105593. PubMed ID: 31945466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse.
    Masuda S; Byford V; Arabian A; Sakai Y; Demay MB; St-Arnaud R; Jones G
    Endocrinology; 2005 Feb; 146(2):825-34. PubMed ID: 15498883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Control Region Near the Fibroblast Growth Factor 23 Gene Mediates Response to Phosphate, 1,25(OH)2D3, and LPS In Vivo.
    Lee SM; Carlson AH; Onal M; Benkusky NA; Meyer MB; Pike JW
    Endocrinology; 2019 Dec; 160(12):2877-2891. PubMed ID: 31599948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.