BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31053864)

  • 1. Cistrome-GO: a web server for functional enrichment analysis of transcription factor ChIP-seq peaks.
    Li S; Wan C; Zheng R; Fan J; Dong X; Meyer CA; Liu XS
    Nucleic Acids Res; 2019 Jul; 47(W1):W206-W211. PubMed ID: 31053864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cistrome: an integrative platform for transcriptional regulation studies.
    Liu T; Ortiz JA; Taing L; Meyer CA; Lee B; Zhang Y; Shin H; Wong SS; Ma J; Lei Y; Pape UJ; Poidinger M; Chen Y; Yeung K; Brown M; Turpaz Y; Liu XS
    Genome Biol; 2011 Aug; 12(8):R83. PubMed ID: 21859476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data.
    Qin Q; Fan J; Zheng R; Wan C; Mei S; Wu Q; Sun H; Brown M; Zhang J; Meyer CA; Liu XS
    Genome Biol; 2020 Feb; 21(1):32. PubMed ID: 32033573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.
    Yang CC; Andrews EH; Chen MH; Wang WY; Chen JJ; Gerstein M; Liu CC; Cheng C
    BMC Genomics; 2016 Aug; 17(1):632. PubMed ID: 27519564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChEA3: transcription factor enrichment analysis by orthogonal omics integration.
    Keenan AB; Torre D; Lachmann A; Leong AK; Wojciechowicz ML; Utti V; Jagodnik KM; Kropiwnicki E; Wang Z; Ma'ayan A
    Nucleic Acids Res; 2019 Jul; 47(W1):W212-W224. PubMed ID: 31114921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse.
    Mei S; Qin Q; Wu Q; Sun H; Zheng R; Zang C; Zhu M; Wu J; Shi X; Taing L; Liu T; Brown M; Meyer CA; Liu XS
    Nucleic Acids Res; 2017 Jan; 45(D1):D658-D662. PubMed ID: 27789702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis.
    Zheng R; Wan C; Mei S; Qin Q; Wu Q; Sun H; Chen CH; Brown M; Zhang X; Meyer CA; Liu XS
    Nucleic Acids Res; 2019 Jan; 47(D1):D729-D735. PubMed ID: 30462313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cistrome Explorer: an interactive visual analysis tool for large-scale epigenomic data.
    L'Yi S; Keller MS; Dandawate A; Taing L; Chen CH; Brown M; Meyer CA; Gehlenborg N
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36688700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering Transcription Factor Noncoding RNA Targets Using ChIP-Seq Analysis.
    Fomin V; Prives C
    Methods Mol Biol; 2020; 2108():305-312. PubMed ID: 31939191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MotifGenie: a Python application for searching transcription factor binding sequences using ChIP-Seq datasets.
    Oguztuzun C; Yasar P; Yavuz K; Muyan M; Can T
    Bioinformatics; 2021 Nov; 37(22):4238-4239. PubMed ID: 33999190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target analysis by integration of transcriptome and ChIP-seq data with BETA.
    Wang S; Sun H; Ma J; Zang C; Wang C; Wang J; Tang Q; Meyer CA; Zhang Y; Liu XS
    Nat Protoc; 2013 Dec; 8(12):2502-15. PubMed ID: 24263090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CR Cistrome: a ChIP-Seq database for chromatin regulators and histone modification linkages in human and mouse.
    Wang Q; Huang J; Sun H; Liu J; Wang J; Wang Q; Qin Q; Mei S; Zhao C; Yang X; Liu XS; Zhang Y
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D450-8. PubMed ID: 24253304
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zeng J; Li G
    Int J Biol Sci; 2018; 14(12):1724-1731. PubMed ID: 30416387
    [No Abstract]   [Full Text] [Related]  

  • 18. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GTRD: a database on gene transcription regulation-2019 update.
    Yevshin I; Sharipov R; Kolmykov S; Kondrakhin Y; Kolpakov F
    Nucleic Acids Res; 2019 Jan; 47(D1):D100-D105. PubMed ID: 30445619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection.
    Oh D; Strattan JS; Hur JK; Bento J; Urban AE; Song G; Cherry JM
    Sci Rep; 2020 May; 10(1):7933. PubMed ID: 32404971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.