These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 31053951)
1. Algae as a green technology for heavy metals removal from various wastewater. Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951 [TBL] [Abstract][Full Text] [Related]
2. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Znad H; Awual MR; Martini S Molecules; 2022 Feb; 27(4):. PubMed ID: 35209061 [TBL] [Abstract][Full Text] [Related]
3. Microalgae-mediated bioremediation: current trends and opportunities-a review. Ali SS; Hassan LHS; El-Sheekh M Arch Microbiol; 2024 Jul; 206(8):343. PubMed ID: 38967670 [TBL] [Abstract][Full Text] [Related]
4. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Goswami RK; Agrawal K; Shah MP; Verma P Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022 [TBL] [Abstract][Full Text] [Related]
5. Potential use of algae for heavy metal bioremediation, a critical review. Zeraatkar AK; Ahmadzadeh H; Talebi AF; Moheimani NR; McHenry MP J Environ Manage; 2016 Oct; 181():817-831. PubMed ID: 27397844 [TBL] [Abstract][Full Text] [Related]
6. Removal of metals from water using a novel high-rate algal pond and submerged macrophyte pond treatment reactor. Wang Y; Song X; Li H; Ding Y Water Sci Technol; 2019 Apr; 79(8):1447-1457. PubMed ID: 31169502 [TBL] [Abstract][Full Text] [Related]
7. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. Mandal RR; Bashir Z; Mandal JR; Raj D Environ Monit Assess; 2024 May; 196(6):502. PubMed ID: 38700594 [TBL] [Abstract][Full Text] [Related]
8. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Kumar V; Dwivedi SK Environ Sci Pollut Res Int; 2021 Mar; 28(9):10375-10412. PubMed ID: 33410020 [TBL] [Abstract][Full Text] [Related]
9. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. Yaashikaa PR; Palanivelu J; Hemavathy RV Chemosphere; 2024 Jun; 357():141933. PubMed ID: 38615953 [TBL] [Abstract][Full Text] [Related]
10. Integration of microalgal cultivation system for wastewater remediation and sustainable biomass production. Gupta PL; Lee SM; Choi HJ World J Microbiol Biotechnol; 2016 Aug; 32(8):139. PubMed ID: 27357407 [TBL] [Abstract][Full Text] [Related]
11. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations. Ramesh B; Saravanan A; Senthil Kumar P; Yaashikaa PR; Thamarai P; Shaji A; Rangasamy G Environ Pollut; 2023 Jun; 327():121572. PubMed ID: 37028793 [TBL] [Abstract][Full Text] [Related]
12. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Dayana Priyadharshini S; Suresh Babu P; Manikandan S; Subbaiya R; Govarthanan M; Karmegam N Environ Pollut; 2021 Dec; 290():117989. PubMed ID: 34433126 [TBL] [Abstract][Full Text] [Related]
13. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Khan AA; Gul J; Naqvi SR; Ali I; Farooq W; Liaqat R; AlMohamadi H; Štěpanec L; Juchelková D Chemosphere; 2022 Nov; 306():135565. PubMed ID: 35793745 [TBL] [Abstract][Full Text] [Related]
14. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Ranjbar S; Malcata FX Molecules; 2022 Feb; 27(5):. PubMed ID: 35268582 [TBL] [Abstract][Full Text] [Related]
15. An insight on pollutant removal mechanisms in phycoremediation of textile wastewater. Selvaraj D; Dhayabaran NK; Mahizhnan A Environ Sci Pollut Res Int; 2023 Dec; 30(60):124714-124734. PubMed ID: 35708812 [TBL] [Abstract][Full Text] [Related]
16. Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Danouche M; El Ghachtouli N; El Arroussi H Heliyon; 2021 Jul; 7(7):e07609. PubMed ID: 34355100 [TBL] [Abstract][Full Text] [Related]
17. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy. Alazaiza MYD; Albahnasawi A; Ahmad Z; Bashir MJK; Al-Wahaibi T; Abujazar MSS; Abu Amr SS; Nassani DE J Environ Manage; 2022 Dec; 324():116415. PubMed ID: 36206653 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Wang L; Wang Y; Ma F; Tankpa V; Bai S; Guo X; Wang X Sci Total Environ; 2019 Jun; 668():1298-1309. PubMed ID: 31018469 [TBL] [Abstract][Full Text] [Related]
19. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. Yeheyo HA; Ealias AM; George G; Jagannathan U J Environ Manage; 2024 Jul; 363():121409. PubMed ID: 38861884 [TBL] [Abstract][Full Text] [Related]
20. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation. Saunders RJ; Paul NA; Hu Y; de Nys R PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]