BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 31053951)

  • 21. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species.
    Ajayan KV; Selvaraju M; Unnikannan P; Sruthi P
    Int J Phytoremediation; 2015; 17(10):907-16. PubMed ID: 25580934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review.
    Soares EV; Soares HM
    Environ Sci Pollut Res Int; 2012 May; 19(4):1066-83. PubMed ID: 22139299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal.
    Ho SH; Zhu S; Chang JS
    Bioresour Technol; 2017 Dec; 246():123-134. PubMed ID: 28893502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New trends in removing heavy metals from wastewater.
    Zhao M; Xu Y; Zhang C; Rong H; Zeng G
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6509-6518. PubMed ID: 27318819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metal resistance in algae and its application for metal nanoparticle synthesis.
    Priyadarshini E; Priyadarshini SS; Pradhan N
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3297-3316. PubMed ID: 30847543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review.
    Ayele A; Haile S; Alemu D; Kamaraj M
    ScientificWorldJournal; 2021; 2021():5588111. PubMed ID: 33927581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies.
    Asgari Lajayer B; Khadem Moghadam N; Maghsoodi MR; Ghorbanpour M; Kariman K
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8468-8484. PubMed ID: 30712209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools.
    He J; Chen JP
    Bioresour Technol; 2014 May; 160():67-78. PubMed ID: 24630371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on biofiltration techniques: recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water.
    Pachaiappan R; Cornejo-Ponce L; Rajendran R; Manavalan K; Femilaa Rajan V; Awad F
    Bioengineered; 2022 Apr; 13(4):8432-8477. PubMed ID: 35260028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents.
    de Freitas GR; da Silva MGC; Vieira MGA
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19097-19118. PubMed ID: 31104247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro- and microphytes.
    Das S; Das S; Ghangrekar MM
    J Basic Microbiol; 2022 Mar; 62(3-4):260-278. PubMed ID: 35014053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland).
    Ayaz T; Khan S; Khan AZ; Lei M; Alam M
    J Environ Manage; 2020 Feb; 255():109833. PubMed ID: 31747629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants.
    Touliabah HE; El-Sheekh MM; Ismail MM; El-Kassas H
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review.
    Lin D; Ji R; Wang D; Xiao M; Zhao J; Zou J; Li Y; Qin T; Xing B; Chen Y; Liu P; Wu Z; Wang L; Zhang Q; Chen H; Qin W; Wu D; Liu Y; Liu Y; Li S
    Crit Rev Food Sci Nutr; 2019; 59(3):395-410. PubMed ID: 28886254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater.
    Lee CS; Lee SA; Ko SR; Oh HM; Ahn CY
    Water Res; 2015 Jan; 68():680-91. PubMed ID: 25462772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation of hazardous heavy metals by marine microorganisms: a recent review.
    Alabssawy AN; Hashem AH
    Arch Microbiol; 2024 Feb; 206(3):103. PubMed ID: 38358529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation.
    Hansda A; Kumar V; Anshumali
    World J Microbiol Biotechnol; 2016 Oct; 32(10):170. PubMed ID: 27565780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of algae for heavy metal adsorption: A 20-year meta-analysis.
    Lin Z; Li J; Luan Y; Dai W
    Ecotoxicol Environ Saf; 2020 Mar; 190():110089. PubMed ID: 31896472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy.
    Bhatt P; Bhandari G; Bhatt K; Simsek H
    Chemosphere; 2022 Nov; 306():135576. PubMed ID: 35803375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of Phytohormones in Enhancing Metal Remediation Capacity of Algae.
    Nguyen TQ; Sesin V; Kisiala A; Emery RJN
    Bull Environ Contam Toxicol; 2020 Nov; 105(5):671-678. PubMed ID: 32435845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.