These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 31053951)
21. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. Bhatt P; Bhandari G; Turco RF; Aminikhoei Z; Bhatt K; Simsek H Environ Pollut; 2022 Sep; 309():119688. PubMed ID: 35793713 [TBL] [Abstract][Full Text] [Related]
22. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species. Ajayan KV; Selvaraju M; Unnikannan P; Sruthi P Int J Phytoremediation; 2015; 17(10):907-16. PubMed ID: 25580934 [TBL] [Abstract][Full Text] [Related]
23. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Soares EV; Soares HM Environ Sci Pollut Res Int; 2012 May; 19(4):1066-83. PubMed ID: 22139299 [TBL] [Abstract][Full Text] [Related]
24. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Ho SH; Zhu S; Chang JS Bioresour Technol; 2017 Dec; 246():123-134. PubMed ID: 28893502 [TBL] [Abstract][Full Text] [Related]
25. New trends in removing heavy metals from wastewater. Zhao M; Xu Y; Zhang C; Rong H; Zeng G Appl Microbiol Biotechnol; 2016 Aug; 100(15):6509-6518. PubMed ID: 27318819 [TBL] [Abstract][Full Text] [Related]
26. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Priyadarshini E; Priyadarshini SS; Pradhan N Appl Microbiol Biotechnol; 2019 Apr; 103(8):3297-3316. PubMed ID: 30847543 [TBL] [Abstract][Full Text] [Related]
27. Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review. Ayele A; Haile S; Alemu D; Kamaraj M ScientificWorldJournal; 2021; 2021():5588111. PubMed ID: 33927581 [TBL] [Abstract][Full Text] [Related]
28. Recent advancements on antibiotic bioremediation in wastewaters with a focus on algae: an overview. Bej S; Swain S; Bishoyi AK; Mandhata CP; Sahoo CR; Padhy RN Environ Technol; 2024 Sep; 45(21):4214-4229. PubMed ID: 37545329 [TBL] [Abstract][Full Text] [Related]
29. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Asgari Lajayer B; Khadem Moghadam N; Maghsoodi MR; Ghorbanpour M; Kariman K Environ Sci Pollut Res Int; 2019 Mar; 26(9):8468-8484. PubMed ID: 30712209 [TBL] [Abstract][Full Text] [Related]
30. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. He J; Chen JP Bioresour Technol; 2014 May; 160():67-78. PubMed ID: 24630371 [TBL] [Abstract][Full Text] [Related]
31. A review on biofiltration techniques: recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Pachaiappan R; Cornejo-Ponce L; Rajendran R; Manavalan K; Femilaa Rajan V; Awad F Bioengineered; 2022 Apr; 13(4):8432-8477. PubMed ID: 35260028 [TBL] [Abstract][Full Text] [Related]
32. Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives. Bhushan D; Shoran S; Kumar R; Gupta R Chemosphere; 2024 Oct; 365():143340. PubMed ID: 39278321 [TBL] [Abstract][Full Text] [Related]
33. Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents. de Freitas GR; da Silva MGC; Vieira MGA Environ Sci Pollut Res Int; 2019 Jul; 26(19):19097-19118. PubMed ID: 31104247 [TBL] [Abstract][Full Text] [Related]
34. Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro- and microphytes. Das S; Das S; Ghangrekar MM J Basic Microbiol; 2022 Mar; 62(3-4):260-278. PubMed ID: 35014053 [TBL] [Abstract][Full Text] [Related]
35. Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland). Ayaz T; Khan S; Khan AZ; Lei M; Alam M J Environ Manage; 2020 Feb; 255():109833. PubMed ID: 31747629 [TBL] [Abstract][Full Text] [Related]
36. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants. Touliabah HE; El-Sheekh MM; Ismail MM; El-Kassas H Molecules; 2022 Feb; 27(3):. PubMed ID: 35164405 [TBL] [Abstract][Full Text] [Related]
37. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review. Lin D; Ji R; Wang D; Xiao M; Zhao J; Zou J; Li Y; Qin T; Xing B; Chen Y; Liu P; Wu Z; Wang L; Zhang Q; Chen H; Qin W; Wu D; Liu Y; Liu Y; Li S Crit Rev Food Sci Nutr; 2019; 59(3):395-410. PubMed ID: 28886254 [TBL] [Abstract][Full Text] [Related]
38. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Lee CS; Lee SA; Ko SR; Oh HM; Ahn CY Water Res; 2015 Jan; 68():680-91. PubMed ID: 25462772 [TBL] [Abstract][Full Text] [Related]
39. Bioremediation of hazardous heavy metals by marine microorganisms: a recent review. Alabssawy AN; Hashem AH Arch Microbiol; 2024 Feb; 206(3):103. PubMed ID: 38358529 [TBL] [Abstract][Full Text] [Related]
40. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. Hansda A; Kumar V; Anshumali World J Microbiol Biotechnol; 2016 Oct; 32(10):170. PubMed ID: 27565780 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]