These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 31053951)

  • 41. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae.
    Zhou GJ; Ying GG; Liu S; Zhou LJ; Chen ZF; Peng FQ
    Environ Sci Process Impacts; 2014 Aug; 16(8):2018-27. PubMed ID: 24953257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review.
    Hazaimeh M
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):109955-109972. PubMed ID: 37801245
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research.
    Shamshad I; Khan S; Waqas M; Asma M; Nawab J; Gul N; Raiz A; Li G
    Int J Phytoremediation; 2016; 18(4):393-8. PubMed ID: 26515662
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production.
    Hernández-García A; Velásquez-Orta SB; Novelo E; Yáñez-Noguez I; Monje-Ramírez I; Orta Ledesma MT
    Ecotoxicol Environ Saf; 2019 Jun; 174():435-444. PubMed ID: 30852308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Development of Chitosan Nanocomposites for Environmental Applications.
    Khan SA; Khan SB; Kamal T; Asiri AM; Akhtar K
    Recent Pat Nanotechnol; 2016; 10(3):181-188. PubMed ID: 27136929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae.
    Hejna M; Kapuścińska D; Aksmann A
    Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioremoval of heavy metals by bacterial biomass.
    Aryal M; Liakopoulou-Kyriakides M
    Environ Monit Assess; 2015 Jan; 187(1):4173. PubMed ID: 25471624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioremoval of heavy metals and nutrients from sewage plant by Anabaena oryzae and Cyanosarcina fontana.
    Fawzy MA; Issa AA
    Int J Phytoremediation; 2016; 18(4):321-8. PubMed ID: 26457837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Emerging revolving algae biofilm system for algal biomass production and nutrient recovery from wastewater.
    Nguyen VT; Le VA; Do QH; Le TN; Vo TD
    Sci Total Environ; 2024 Feb; 912():168911. PubMed ID: 38016564
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?
    Zhou Y; Meng J; Zhang M; Chen S; He B; Zhao H; Li Q; Zhang S; Wang T
    Environ Int; 2019 Oct; 131():104982. PubMed ID: 31299603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microalgae: cultivation techniques and wastewater phycoremediation.
    Pacheco MM; Hoeltz M; Moraes MS; Schneider RC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):585-601. PubMed ID: 25837561
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microalgae and bio-polymeric adsorbents: an integrative approach giving new directions to wastewater treatment.
    Saket P; Kashyap M; Bala K; Joshi A
    Int J Phytoremediation; 2022; 24(5):536-556. PubMed ID: 34340616
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of algae for removing heavy metal ions from wastewater: progress and prospects.
    Mehta SK; Gaur JP
    Crit Rev Biotechnol; 2005; 25(3):113-52. PubMed ID: 16294830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review.
    Abdolali A; Guo WS; Ngo HH; Chen SS; Nguyen NC; Tung KL
    Bioresour Technol; 2014 May; 160():57-66. PubMed ID: 24405653
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Industrial wastewater treatment in internal circulation bioreactor followed by wetlands containing emergent plants and algae.
    Gulzar F; Mahmood Q; Bhatti ZA; Zeb BS; Shaheen S; Hayat T; Shahid N; Zeb T
    World J Microbiol Biotechnol; 2018 Jul; 34(8):119. PubMed ID: 30014433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A systematic study for removal of heavy metals from aqueous media using Sorghum bicolor: an efficient biosorbent.
    Naseem K; Farooqi ZH; Ur Rehman MZ; Ur Rehman MA; Begum R; Huma R; Shahbaz A; Najeeb J; Irfan A
    Water Sci Technol; 2018 Jun; 77(9-10):2355-2368. PubMed ID: 29893724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014.
    El-Gendy MM; El-Bondkly AM
    Braz J Microbiol; 2016; 47(3):571-86. PubMed ID: 27245130
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heavy metals remediation through lactic acid bacteria: Current status and future prospects.
    Ma X
    Sci Total Environ; 2024 Oct; 946():174455. PubMed ID: 38964392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms of heavy metal removal using microorganisms as biosorbent.
    Javanbakht V; Alavi SA; Zilouei H
    Water Sci Technol; 2014; 69(9):1775-87. PubMed ID: 24804650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insight into biosorption of heavy metals by extracellular polymer substances and the improvement of the efficacy: a review.
    Li C; Yu Y; Fang A; Feng D; Du M; Tang A; Chen S; Li A
    Lett Appl Microbiol; 2022 Nov; 75(5):1064-1073. PubMed ID: 34562275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.