BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31054055)

  • 1. The occurrence of THMs and AOX in drinking water of Shandong Province, China.
    Yao Z; Sun S; Wang M; Zhao Q; Jia R
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18583-18592. PubMed ID: 31054055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.
    Tan J; Allard S; Gruchlik Y; McDonald S; Joll CA; Heitz A
    Sci Total Environ; 2016 Jan; 541():1572-1580. PubMed ID: 26490534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China.
    Huang H; Zhu H; Gan W; Chen X; Yang X
    Chemosphere; 2017 Dec; 188():257-264. PubMed ID: 28886560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The occurrence and transformation behaviors of disinfection byproducts in drinking water distribution systems in rural areas of eastern China.
    Yu Y; Ma X; Chen R; Li G; Tao H; Shi B
    Chemosphere; 2019 Aug; 228():101-109. PubMed ID: 31026630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of disinfection byproducts in typical Chinese drinking water.
    Liu W; Zhao Y; Chow CW; Wang D
    J Environ Sci (China); 2011; 23(6):897-903. PubMed ID: 22066211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk associated with increasing bromide in drinking water sources in Yancheng City, China.
    Wang Y; Zhu G
    Environ Monit Assess; 2019 Dec; 192(1):36. PubMed ID: 31828539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study for distribution level of disinfection byproducts in drinking water from six cities in China].
    Deng Y; Wei J; E X; Wang W; et al
    Wei Sheng Yan Jiu; 2008 Mar; 37(2):207-10. PubMed ID: 18589610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar.
    Al-Otoum F; Al-Ghouti MA; Ahmed TA; Abu-Dieyeh M; Ali M
    Chemosphere; 2016 Dec; 164():649-656. PubMed ID: 27635648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of precursors and treatment process on the formation of Iodo-THMs in Canadian drinking water.
    Tugulea AM; Aranda-Rodriguez R; Bérubé D; Giddings M; Lemieux F; Hnatiw J; Dabeka L; Breton F
    Water Res; 2018 Mar; 130():215-223. PubMed ID: 29223782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and spatial variations of disinfection by-products in South Taihu's drinking water, Zhejiang Province, China.
    Liu T; Zhang M; Wen D; Fu Y; Yao J; Shao G; Peng Z
    J Water Health; 2023 Oct; 21(10):1503-1517. PubMed ID: 37902205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of disinfection by-products in low DOC surface waters in Turkey.
    Ates N; Kaplan SS; Sahinkaya E; Kitis M; Dilek FB; Yetis U
    J Hazard Mater; 2007 Apr; 142(1-2):526-34. PubMed ID: 17034942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using regression models to evaluate the formation of trihalomethanes and haloacetonitriles via chlorination of source water with low SUVA values in the Yangtze River Delta region, China.
    Hong H; Song Q; Mazumder A; Luo Q; Chen J; Lin H; Yu H; Shen L; Liang Y
    Environ Geochem Health; 2016 Dec; 38(6):1303-1312. PubMed ID: 26803297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models for predicting carbonaceous disinfection by-products formation in drinking water treatment plants: a case study of South Korea.
    Shahi NK; Maeng M; Dockko S
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):24594-24603. PubMed ID: 31243657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) using Box-Behnken design.
    Singh KP; Rai P; Pandey P; Sinha S
    Environ Sci Pollut Res Int; 2012 Jan; 19(1):113-27. PubMed ID: 21695538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using water quality parameters to prediction of the ion-based trihalomethane by an artificial neural network model.
    Babaei AA; Tahmasebi Birgani Y; Baboli Z; Maleki H; Ahmadi Angali K
    Environ Monit Assess; 2023 Jul; 195(8):917. PubMed ID: 37402828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks.
    Ioannou P; Charisiadis P; Andra SS; Makris KC
    Sci Total Environ; 2016 Feb; 543(Pt A):505-513. PubMed ID: 26599150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of trihalomethanes (THMs) in drinking water supplies: a case study of eastern part of India.
    Kumari M; Gupta SK
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12615-23. PubMed ID: 25911288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of water chemistry on disinfection by-product formation in the complex surface water system.
    Hao R; Zhang Y; Du T; Yang L; Adeleye AS; Li Y
    Chemosphere; 2017 Apr; 172():384-391. PubMed ID: 28088529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.