These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31054181)
1. Overexpression of a Monocot Acyl-CoA-Binding Protein Confers Broad-Spectrum Pathogen Protection in a Dicot. Panthapulakkal Narayanan S; Liao P; Taylor PWJ; Lo C; Chye ML Proteomics; 2019 Jun; 19(12):e1800368. PubMed ID: 31054181 [TBL] [Abstract][Full Text] [Related]
2. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Panthapulakkal Narayanan S; Lung SC; Liao P; Lo C; Chye ML Sci Rep; 2020 Sep; 10(1):14918. PubMed ID: 32913218 [TBL] [Abstract][Full Text] [Related]
3. Enhanced resistance to fungal and bacterial diseases in tomato and Arabidopsis expressing BSR2 from rice. Maeda S; Yokotani N; Oda K; Mori M Plant Cell Rep; 2020 Nov; 39(11):1493-1503. PubMed ID: 32772129 [TBL] [Abstract][Full Text] [Related]
5. The rice CYP78A gene BSR2 confers resistance to Rhizoctonia solani and affects seed size and growth in Arabidopsis and rice. Maeda S; Dubouzet JG; Kondou Y; Jikumaru Y; Seo S; Oda K; Matsui M; Hirochika H; Mori M Sci Rep; 2019 Jan; 9(1):587. PubMed ID: 30679785 [TBL] [Abstract][Full Text] [Related]
6. Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice. Dubouzet JG; Maeda S; Sugano S; Ohtake M; Hayashi N; Ichikawa T; Kondou Y; Kuroda H; Horii Y; Matsui M; Oda K; Hirochika H; Takatsuji H; Mori M Plant Biotechnol J; 2011 May; 9(4):466-85. PubMed ID: 20955180 [TBL] [Abstract][Full Text] [Related]
7. Methods for analysis of disease resistance and the defense response in Arabidopsis. Li G; Zhang X; Wan D; Zhang S; Xia Y Methods Mol Biol; 2013; 1043():55-66. PubMed ID: 23913035 [TBL] [Abstract][Full Text] [Related]
8. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
9. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. Wang C; Ding Y; Yao J; Zhang Y; Sun Y; Colee J; Mou Z Plant J; 2015 Sep; 83(6):1019-33. PubMed ID: 26216741 [TBL] [Abstract][Full Text] [Related]
10. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081 [TBL] [Abstract][Full Text] [Related]
11. The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory. Laluk K; Mengiste T Plant J; 2011 Nov; 68(3):480-94. PubMed ID: 21749505 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Nandi A; Moeder W; Kachroo P; Klessig DF; Shah J Mol Plant Microbe Interact; 2005 Apr; 18(4):363-70. PubMed ID: 15828688 [TBL] [Abstract][Full Text] [Related]
13. Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. Molla KA; Karmakar S; Chanda PK; Sarkar SN; Datta SK; Datta K Plant Sci; 2016 Sep; 250():105-114. PubMed ID: 27457988 [TBL] [Abstract][Full Text] [Related]
14. Subcellular Localization of Rice Acyl-CoA-Binding Proteins ACBP4 and ACBP5 Supports Their Non-redundant Roles in Lipid Metabolism. Liao P; Leung KP; Lung SC; Panthapulakkal Narayanan S; Jiang L; Chye ML Front Plant Sci; 2020; 11():331. PubMed ID: 32265974 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea. Zhang H; Hong Y; Huang L; Li D; Song F Sci Rep; 2016 Jul; 6():30251. PubMed ID: 27445230 [TBL] [Abstract][Full Text] [Related]
16. Ectopic Expression of Grapevine Gene Tian S; Yin X; Fu P; Wu W; Lu J Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31892116 [TBL] [Abstract][Full Text] [Related]
17. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471 [TBL] [Abstract][Full Text] [Related]
18. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Dhawan R; Luo H; Foerster AM; Abuqamar S; Du HN; Briggs SD; Mittelsten Scheid O; Mengiste T Plant Cell; 2009 Mar; 21(3):1000-19. PubMed ID: 19286969 [TBL] [Abstract][Full Text] [Related]
19. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415 [TBL] [Abstract][Full Text] [Related]
20. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. Piisilä M; Keceli MA; Brader G; Jakobson L; Jõesaar I; Sipari N; Kollist H; Palva ET; Kariola T BMC Plant Biol; 2015 Feb; 15():53. PubMed ID: 25849639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]