These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31054332)

  • 21. Neural conflict-control mechanisms improve memory for target stimuli.
    Krebs RM; Boehler CN; De Belder M; Egner T
    Cereb Cortex; 2015 Mar; 25(3):833-43. PubMed ID: 24108799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The selective use of punishments on congruent versus incongruent trials in the Stroop task.
    Yang Q; Xing J; Braem S; Pourtois G
    Neurobiol Learn Mem; 2022 Sep; 193():107654. PubMed ID: 35777632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcranial magnetic stimulation to dorsolateral prefrontal cortex affects conflict-induced behavioural adaptation in a Wisconsin Card Sorting Test analogue.
    Boschin EA; Mars RB; Buckley MJ
    Neuropsychologia; 2017 Jan; 94():36-43. PubMed ID: 27889392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cognitive control during a spatial Stroop task: Comparing conflict monitoring and prediction of response-outcome theories.
    Pires L; Leitão J; Guerrini C; Simões MR
    Acta Psychol (Amst); 2018 Sep; 189():63-75. PubMed ID: 28683927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional connectivity during Stroop task performance.
    Harrison BJ; Shaw M; Yücel M; Purcell R; Brewer WJ; Strother SC; Egan GF; Olver JS; Nathan PJ; Pantelis C
    Neuroimage; 2005 Jan; 24(1):181-91. PubMed ID: 15588609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is "conflict adaptation" driven by conflict? Behavioral and EEG evidence for the underappreciated role of congruent trials.
    Compton RJ; Huber E; Levinson AR; Zheutlin A
    Psychophysiology; 2012 May; 49(5):583-9. PubMed ID: 22332754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential congruency effects: disentangling priming and conflict adaptation.
    Puccioni O; Vallesi A
    Psychol Res; 2012 Sep; 76(5):591-600. PubMed ID: 21735040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophysiological correlates related to the conflict adaptation effect in an emotional conflict task.
    Xue S; Ren G; Kong X; Liu J; Qiu J
    Neurosci Lett; 2015 Jan; 584():219-23. PubMed ID: 25459295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple cognitive control mechanisms associated with the nature of conflict.
    Kim C; Chung C; Kim J
    Neurosci Lett; 2010 Jun; 476(3):156-60. PubMed ID: 20399838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of emotional interference on cognitive control: A meta-analysis of neuroimaging studies using the emotional Stroop task.
    Song S; Zilverstand A; Song H; d'Oleire Uquillas F; Wang Y; Xie C; Cheng L; Zou Z
    Sci Rep; 2017 May; 7(1):2088. PubMed ID: 28522823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.
    Chen Z; Lei X; Ding C; Li H; Chen A
    Neuroimage; 2013 Feb; 66():577-84. PubMed ID: 23103691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Color-word matching stroop task: separating interference and response conflict.
    Zysset S; Müller K; Lohmann G; von Cramon DY
    Neuroimage; 2001 Jan; 13(1):29-36. PubMed ID: 11133306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation to conflict frequency without contingency and temporal learning: Evidence from the picture-word interference task.
    Spinelli G; Perry JR; Lupker SJ
    J Exp Psychol Hum Percept Perform; 2019 Aug; 45(8):995-1014. PubMed ID: 31144859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An fMRI study of the functional mechanisms of Stroop/reverse-Stroop effects.
    Song Y; Hakoda Y
    Behav Brain Res; 2015 Sep; 290():187-96. PubMed ID: 25952963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional connectivity patterns reflect individual differences in conflict adaptation.
    Wang X; Wang T; Chen Z; Hitchman G; Liu Y; Chen A
    Neuropsychologia; 2015 Apr; 70():177-84. PubMed ID: 25721566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conflict modification: predictable production of congruent situations facilitates responding in a stroop task.
    Schmidts C; Foerster A; Kunde W
    Psychol Res; 2019 Nov; 83(8):1722-1732. PubMed ID: 29679142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain Functional Mechanisms in Attentional Processing Following Modified Conflict Stroop Task.
    M J; M Z; J K; S A K; H S; N G
    J Biomed Phys Eng; 2020 Aug; 10(4):493-506. PubMed ID: 32802797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid intelligence and neural mechanisms of emotional conflict adaptation.
    Li D; Liu T; Shi J
    Int J Psychophysiol; 2020 Jun; 152():1-14. PubMed ID: 32251692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct Roles for the Anterior Cingulate and Dorsolateral Prefrontal Cortices During Conflict Between Abstract Rules.
    Boschin EA; Brkic MM; Simons JS; Buckley MJ
    Cereb Cortex; 2017 Jan; 27(1):34-45. PubMed ID: 28365775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.
    Minamoto T; Yaoi K; Osaka M; Osaka N
    Cortex; 2015 Oct; 71():277-90. PubMed ID: 26280275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.