BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 31054385)

  • 1. Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study.
    Almansour NA; Syed HF; Khayat NR; Altheeb RK; Juri RE; Alhiyafi J; Alrashed S; Olatunji SO
    Comput Biol Med; 2019 Jun; 109():101-111. PubMed ID: 31054385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis of Chronic Kidney Disease Using Effective Classification Algorithms and Recursive Feature Elimination Techniques.
    Senan EM; Al-Adhaileh MH; Alsaade FW; Aldhyani THH; Alqarni AA; Alsharif N; Uddin MI; Alahmadi AH; Jadhav ME; Alzahrani MY
    J Healthc Eng; 2021; 2021():1004767. PubMed ID: 34211680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction.
    Rashid J; Batool S; Kim J; Wasif Nisar M; Hussain A; Juneja S; Kushwaha R
    Front Public Health; 2022; 10():860396. PubMed ID: 35433587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of machine learning classifiers for risk prediction of asthma disease.
    Ullah R; Khan S; Ali H; Chaudhary II; Bilal M; Ahmad I
    Photodiagnosis Photodyn Ther; 2019 Dec; 28():292-296. PubMed ID: 31614223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications.
    Navaneeth B; Suchetha M
    Comput Biol Med; 2019 May; 108():85-92. PubMed ID: 31003183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnosis of urinary tract infection based on artificial intelligence methods.
    Ozkan IA; Koklu M; Sert IU
    Comput Methods Programs Biomed; 2018 Nov; 166():51-59. PubMed ID: 30415718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach.
    Paiva JS; Cardoso J; Pereira T
    Int J Med Inform; 2018 Jan; 109():30-38. PubMed ID: 29195703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework.
    He L; Li H; Holland SK; Yuan W; Altaye M; Parikh NA
    Neuroimage Clin; 2018; 18():290-297. PubMed ID: 29876249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning approaches for sex estimation using cranial measurements.
    Toneva D; Nikolova S; Agre G; Zlatareva D; Hadjidekov V; Lazarov N
    Int J Legal Med; 2021 May; 135(3):951-966. PubMed ID: 33179173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of ANN and SVM for prediction nutrients in rivers.
    Stamenković LJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(8):867-873. PubMed ID: 34061713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods.
    Polat H; Danaei Mehr H; Cetin A
    J Med Syst; 2017 Apr; 41(4):55. PubMed ID: 28243816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification.
    Mendez KM; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of machine learning methods for the detection of focal cortical dysplasia lesions: decision tree, support vector machine and artificial neural network.
    Ganji Z; Aghaee Hakak M; Zare H
    Neurol Res; 2022 Dec; 44(12):1142-1149. PubMed ID: 35981138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a machine learning-based multimode diagnosis system for lung cancer.
    Duan S; Cao H; Liu H; Miao L; Wang J; Zhou X; Wang W; Hu P; Qu L; Wu Y
    Aging (Albany NY); 2020 May; 12(10):9840-9854. PubMed ID: 32445550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
    Cai B; Jiang X
    J Biomed Inform; 2014 Apr; 48():114-21. PubMed ID: 24361387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer Type Prediction and Classification Based on RNA-sequencing Data.
    Hsu YH; Si D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5374-5377. PubMed ID: 30441551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark.
    Abdel-Fattah MA; Othman NA; Goher N
    Comput Intell Neurosci; 2022; 2022():9898831. PubMed ID: 35251161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of survival predictions for rats with hemorrhagic shocks using an artificial neural network and support vector machine.
    Jang KH; Yoo TK; Choi JY; Nam KC; Choi JL; Kwon MK; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():91-4. PubMed ID: 22254258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinically Applicable Machine Learning Approaches to Identify Attributes of Chronic Kidney Disease (CKD) for Use in Low-Cost Diagnostic Screening.
    Rashed-Al-Mahfuz M; Haque A; Azad A; Alyami SA; Quinn JMW; Moni MA
    IEEE J Transl Eng Health Med; 2021; 9():4900511. PubMed ID: 33948393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.