BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31054415)

  • 41. Environmental hypothesis: is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India?
    Spallholz JE; Mallory Boylan L; Rhaman MM
    Sci Total Environ; 2004 May; 323(1-3):21-32. PubMed ID: 15081714
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arsenic contamination of groundwater in the Terai region of Nepal: an overview of health concerns and treatment options.
    Pokhrel D; Bhandari BS; Viraraghavan T
    Environ Int; 2009 Jan; 35(1):157-61. PubMed ID: 18723222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects.
    Luong VT; Cañas Kurz EE; Hellriegel U; Luu TL; Hoinkis J; Bundschuh J
    Water Res; 2018 Apr; 133():110-122. PubMed ID: 29367047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Groundwater arsenic contamination in Bangladesh and West Bengal, India.
    Chowdhury UK; Biswas BK; Chowdhury TR; Samanta G; Mandal BK; Basu GC; Chanda CR; Lodh D; Saha KC; Mukherjee SK; Roy S; Kabir S; Quamruzzaman Q; Chakraborti D
    Environ Health Perspect; 2000 May; 108(5):393-7. PubMed ID: 10811564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Status of groundwater arsenic contamination in Bangladesh: a 14-year study report.
    Chakraborti D; Rahman MM; Das B; Murrill M; Dey S; Chandra Mukherjee S; Dhar RK; Biswas BK; Chowdhury UK; Roy S; Sorif S; Selim M; Rahman M; Quamruzzaman Q
    Water Res; 2010 Nov; 44(19):5789-802. PubMed ID: 20684969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene Aerogels Decorated with α-FeOOH Nanoparticles for Efficient Adsorption of Arsenic from Contaminated Waters.
    Andjelkovic I; Tran DN; Kabiri S; Azari S; Markovic M; Losic D
    ACS Appl Mater Interfaces; 2015 May; 7(18):9758-66. PubMed ID: 25871444
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Remediation technologies for heavy metal contaminated groundwater.
    Hashim MA; Mukhopadhyay S; Sahu JN; Sengupta B
    J Environ Manage; 2011 Oct; 92(10):2355-88. PubMed ID: 21708421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Managing hazardous pollutants in Chile: arsenic.
    Sancha AM; O'Ryan R
    Rev Environ Contam Toxicol; 2008; 196():123-46. PubMed ID: 19025095
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence of Economically Sustainable Village-Scale Microenterprises for Arsenic Remediation in Developing Countries.
    German MS; Watkins TA; Chowdhury M; Chatterjee P; Rahman M; Seingheng H; SenGupta AK
    Environ Sci Technol; 2019 Feb; 53(3):1078-1086. PubMed ID: 30620879
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arsenic removal from groundwater by MnO2-modified natural clinoptilolite zeolite: effects of pH and initial feed concentration.
    Camacho LM; Parra RR; Deng S
    J Hazard Mater; 2011 May; 189(1-2):286-93. PubMed ID: 21398033
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Technological options for the removal of arsenic with special reference to South East Asia.
    Jain CK; Singh RD
    J Environ Manage; 2012 Sep; 107():1-18. PubMed ID: 22579769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Possible treatments for arsenic removal in Latin American waters for human consumption.
    Litter MI; Morgada ME; Bundschuh J
    Environ Pollut; 2010 May; 158(5):1105-18. PubMed ID: 20189697
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation.
    Alarcón-Herrera MT; Bundschuh J; Nath B; Nicolli HB; Gutierrez M; Reyes-Gomez VM; Nuñez D; Martín-Dominguez IR; Sracek O
    J Hazard Mater; 2013 Nov; 262():960-9. PubMed ID: 22920686
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials.
    Mondal MK; Garg R
    Environ Sci Pollut Res Int; 2017 May; 24(15):13295-13306. PubMed ID: 28401386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger.
    Chakraborti D; Singh SK; Rahman MM; Dutta RN; Mukherjee SC; Pati S; Kar PB
    Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29360747
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arsenic removal methods for drinking water in the developing countries: technological developments and research needs.
    Kabir F; Chowdhury S
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24102-24120. PubMed ID: 28975542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices.
    Litter MI; Ingallinella AM; Olmos V; Savio M; Difeo G; Botto L; Torres EMF; Taylor S; Frangie S; Herkovits J; Schalamuk I; González MJ; Berardozzi E; García Einschlag FS; Bhattacharya P; Ahmad A
    Sci Total Environ; 2019 Nov; 690():778-789. PubMed ID: 31302543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removing arsenic from groundwater for the developing world--a review.
    Jiang JQ
    Water Sci Technol; 2001; 44(6):89-98. PubMed ID: 11700669
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanofiltration for Arsenic Removal: Challenges, Recent Developments, and Perspectives.
    Siddique TA; Dutta NK; Roy Choudhury N
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32640523
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sepiolite-Based Adsorbents for the Removal of Potentially Toxic Elements from Water: A Strategic Review for the Case of Environmental Contamination in Hunan, China.
    Wang Z; Liao L; Hursthouse A; Song N; Ren B
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30081530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.