These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31054697)

  • 1. Ethyl carbamate regulation and genomic expression of Saccharomyces cerevisiae during mixed-culture yellow rice wine fermentation with Lactobacillus sp.
    Fang R; Zhou W; Chen Q
    Food Chem; 2019 Sep; 292():90-97. PubMed ID: 31054697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of bamboo leaves extract to Chinese yellow rice wine brewing for ethyl carbamate regulation and its mitigation mechanism.
    Zhou W; Hu J; Zhang X; Chen Q
    Food Chem; 2020 Jul; 319():126554. PubMed ID: 32169766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation.
    Wu D; Xie W; Li X; Cai G; Lu J; Xie G
    Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.
    Wu D; Li X; Lu J; Chen J; Zhang L; Xie G
    FEMS Microbiol Lett; 2016 Jan; 363(1):fnv214. PubMed ID: 26538578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain.
    Wu D; Li X; Shen C; Lu J; Chen J; Xie G
    Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae.
    Guo XW; Li YZ; Guo J; Wang Q; Huang SY; Chen YF; Du LP; Xiao DG
    J Ind Microbiol Biotechnol; 2016 May; 43(5):671-9. PubMed ID: 26831650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and expression of bifunctional acid urea-degrading enzyme/urethanase from Enterobacter sp. R-SYB082 and its application in degradation of ethyl carbamate in Chinese rice wine (Huangjiu).
    Zheng H; Meng K; Liu J; Lin Z; Peng Q; Xie G; Wu P; Elsheery NI
    J Sci Food Agric; 2022 Aug; 102(11):4599-4608. PubMed ID: 35179235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chinese Yellow Rice Wine Processing with Reduced Ethyl Carbamate Formation by Deleting Transcriptional Regulator Dal80p in
    Wei T; Jiao Z; Hu J; Lou H; Chen Q
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32781689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of Ethyl Carbamate and Urea with Lysinibacillus sphaericus MT33 in Chinese Liquor Fermentation.
    Cui K; Wu Q; Xu Y
    J Agric Food Chem; 2018 Feb; 66(6):1583-1590. PubMed ID: 29359925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced production of Ethyl Carbamate in wine by regulating the accumulation of arginine in Saccharomyces cerevisiae.
    Gao M; Li W; Fan L; Wei C; Yu S; Chen R; Ma L; Du L; Zhang H; Yang W
    J Biotechnol; 2024 Apr; 385():65-74. PubMed ID: 38503366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor.
    Du H; Song Z; Xu Y
    J Agric Food Chem; 2018 Jan; 66(1):387-392. PubMed ID: 29232952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances in microbial enzymatic elimination of ethyl carbamate in Chinese rice wine].
    Liu Q; Kang Z; Du G
    Sheng Wu Gong Cheng Xue Bao; 2019 Apr; 35(4):567-576. PubMed ID: 31001943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine.
    Dahabieh MS; Husnik JI; Van Vuuren HJ
    J Appl Microbiol; 2010 Sep; 109(3):963-73. PubMed ID: 20408912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.
    Barbosa C; Mendes-Faia A; Lage P; Mira NP; Mendes-Ferreira A
    Microb Cell Fact; 2015 Aug; 14():124. PubMed ID: 26314747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2.
    Ma L; Huang S; Du L; Tang P; Xiao D
    J Agric Food Chem; 2017 Aug; 65(32):6936-6942. PubMed ID: 28721728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gallic and protocatechuic acids on the metabolism of ethyl carbamate in Chinese yellow rice wine brewing.
    Zhou W; Fang R; Chen Q
    Food Chem; 2017 Oct; 233():174-181. PubMed ID: 28530563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system.
    Zhao X; Zou H; Fu J; Zhou J; Du G; Chen J
    Appl Environ Microbiol; 2014 Jan; 80(1):392-8. PubMed ID: 24185848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation.
    Lu Y; Chua JY; Huang D; Lee PR; Liu SQ
    Food Chem; 2017 Jan; 215():209-18. PubMed ID: 27542469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial communities and volatile metabolites in different traditional fermentation starters used for Hong Qu glutinous rice wine.
    Huang ZR; Guo WL; Zhou WB; Li L; Xu JX; Hong JL; Liu HP; Zeng F; Bai WD; Liu B; Ni L; Rao PF; Lv XC
    Food Res Int; 2019 Jul; 121():593-603. PubMed ID: 31108786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and hazard of ethyl carbamate and construction of genetically engineered Saccharomyces cerevisiae strains in Huangjiu (Chinese grain wine).
    Li M; Jia W
    Compr Rev Food Sci Food Saf; 2024 Mar; 23(2):e13321. PubMed ID: 38517033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.