These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 31054698)
1. Monitoring zearalenone in corn flour utilizing novel self-enhanced electrochemiluminescence aptasensor based on NGQDs-NH Luo L; Ma S; Li L; Liu X; Zhang J; Li X; Liu D; You T Food Chem; 2019 Sep; 292():98-105. PubMed ID: 31054698 [TBL] [Abstract][Full Text] [Related]
2. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Luo L; Liu X; Ma S; Li L; You T Food Chem; 2020 Aug; 322():126778. PubMed ID: 32305007 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels. Wang C; Qian J; Wang K; Hua M; Liu Q; Hao N; You T; Huang X ACS Appl Mater Interfaces; 2015 Dec; 7(48):26865-73. PubMed ID: 26524349 [TBL] [Abstract][Full Text] [Related]
4. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO Bi X; Li L; Liu X; Luo L; Cheng Z; Sun J; Cai Z; Liu J; You T Food Chem; 2021 Jul; 349():129171. PubMed ID: 33582542 [TBL] [Abstract][Full Text] [Related]
5. Dual-quenching effects of methylene blue on the luminophore and co-reactant: Application for electrochemiluminescent-electrochemical ratiometric zearalenone detection. Luo L; Liu X; Bi X; Li L; You T Biosens Bioelectron; 2023 Feb; 222():114991. PubMed ID: 36495721 [TBL] [Abstract][Full Text] [Related]
6. Enhanced electrochemiluminescence based on Ru(bpy)₃²⁺-doped silica nanoparticles and graphene composite for analysis of melamine in milk. Zhou L; Huang J; Yang L; Li L; You T Anal Chim Acta; 2014 May; 824():57-63. PubMed ID: 24759748 [TBL] [Abstract][Full Text] [Related]
7. Sensitive and selective detection of Hg Li L; Chen B; Luo L; Liu X; Bi X; You T Talanta; 2021 Jan; 222():121579. PubMed ID: 33167266 [TBL] [Abstract][Full Text] [Related]
8. Label-free Hg(II) electrochemiluminescence sensor based on silica nanoparticles doped with a self-enhanced Ru(bpy) Li L; Zhao W; Zhang J; Luo L; Liu X; Li X; You T; Zhao C J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1151-1161. PubMed ID: 34735851 [TBL] [Abstract][Full Text] [Related]
9. An "on-off-on" electrochemiluminescence aptasensor based on a self-enhanced luminophore for ochratoxin A detection. Sang M; Meng X; Zhang Y; Li Z; Zhou Q; Jing X; Sun X; Zhao W Anal Bioanal Chem; 2023 Sep; 415(23):5833-5844. PubMed ID: 37477648 [TBL] [Abstract][Full Text] [Related]
10. Ru(bpy) Du FK; Zhang H; Tan XC; Yan J; Liu M; Chen X; Wu YY; Feng DF; Chen QY; Cen JM; Liu SG; Qiu YQ; Han HY Biosens Bioelectron; 2018 May; 106():50-56. PubMed ID: 29414088 [TBL] [Abstract][Full Text] [Related]
11. Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO Wang Y; Zhao G; Li X; Liu L; Cao W; Wei Q Biosens Bioelectron; 2018 Mar; 101():290-296. PubMed ID: 29096368 [TBL] [Abstract][Full Text] [Related]
12. A sensitive electrochemiluminescence biosensor for assay of cancer biomarker (MMP-2) based on NGQDs-Ru@SiO2 luminophore. Fan X; Wang S; Liu H; Li Z; Sun Q; Wang Y; Fan X Talanta; 2022 Jan; 236():122830. PubMed ID: 34635220 [TBL] [Abstract][Full Text] [Related]
13. Polyelectrolyte-based electrochemiluminescence enhancement for Ru(bpy)₃²⁺ loaded by SiO₂ nanoparticle carrier and its high sensitive immunoassay. Ge ZL; Song TM; Chen Z; Guo WR; Xie HP; Xie L Anal Chim Acta; 2015 Mar; 862():24-32. PubMed ID: 25682425 [TBL] [Abstract][Full Text] [Related]
14. Regulation of Ru(bpy) Li Y; Liu D; Meng S; Zhang J; Li L; You T Anal Chem; 2022 Jan; 94(2):1294-1301. PubMed ID: 34965091 [TBL] [Abstract][Full Text] [Related]
15. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097 [TBL] [Abstract][Full Text] [Related]
16. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Fu X; Tan X; Yuan R; Chen S Biosens Bioelectron; 2017 Apr; 90():61-68. PubMed ID: 27883960 [TBL] [Abstract][Full Text] [Related]
17. An efficient signal-on aptamer-based biosensor for adenosine triphosphate detection using graphene oxide both as an electrochemical and electrochemiluminescence signal indicator. Huang X; Li Y; Zhang X; Zhang X; Chen Y; Gao W Analyst; 2015 Sep; 140(17):6015-24. PubMed ID: 26191542 [TBL] [Abstract][Full Text] [Related]
18. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO Zhang W; Xiong H; Chen M; Zhang X; Wang S Biosens Bioelectron; 2017 Oct; 96():55-61. PubMed ID: 28460332 [TBL] [Abstract][Full Text] [Related]
19. Development of a "Signal-On" Fluorescent Aptasensor for Highly Selective and Sensitive Detection of ZEN in Cereal Products Using Nitrogen-Doped Carbon Dots Based on the Inner Filter Effect. Sun Q; Zhou Y; Ma M; Zhang F; Li S; Chen Z; Fang Y; Le T; Xing F Biosensors (Basel); 2024 Jul; 14(7):. PubMed ID: 39056623 [TBL] [Abstract][Full Text] [Related]
20. In-situ produced ascorbic acid as coreactant for an ultrasensitive solid-state tris(2,2'-bipyridyl) ruthenium(II) electrochemiluminescence aptasensor. Liao Y; Yuan R; Chai Y; Zhuo Y; Yuan Y; Bai L; Mao L; Yuan S Biosens Bioelectron; 2011 Aug; 26(12):4815-8. PubMed ID: 21696941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]