These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31054819)

  • 1. Journey history reconstruction from the soils and sediments on footwear: An empirical approach.
    Morgan RM; Scott KR; Ainley J; Bull PA
    Sci Justice; 2019 May; 59(3):306-316. PubMed ID: 31054819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential analysis of very small particles (VSP) from the contact surfaces and recessed areas of footwear.
    Stoney DA; Bowen AM; Ausdemore M; Stoney PL; Neumann C; Stoney FP
    Forensic Sci Int; 2019 May; 298():106-114. PubMed ID: 30901709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transfer of diatoms from freshwater to footwear materials: An experimental study assessing transfer, persistence, and extraction methods for forensic reconstruction.
    Levin EA; Morgan RM; Scott KR; Jones VJ
    Sci Justice; 2017 Sep; 57(5):349-360. PubMed ID: 28889864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroscopic assessment of environmental trace evidence dynamics in forensic settings.
    Cubbage HR; Macey C; Scott KR
    Sci Justice; 2023 May; 63(3):376-386. PubMed ID: 37169463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating forensic casework scenarios in experimental studies: The generation of footwear marks in blood.
    McElhone RL; Meakin GE; French JC; Alexander T; Morgan RM
    Forensic Sci Int; 2016 Jul; 264():34-40. PubMed ID: 27017082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners.
    Goga H
    Int J Legal Med; 2012 Sep; 126(5):815-23. PubMed ID: 22729347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casework-related DNA transfer on footwear in consideration of the shedder status.
    Schmidt M; Bamberg M; Dierig L; Kunz SN; Wiegand P
    Forensic Sci Int Genet; 2022 Jan; 56():102630. PubMed ID: 34808489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss and replacement of small particles on the contact surfaces of footwear during successive exposures.
    Stoney DA; Bowen AM; Stoney PL
    Forensic Sci Int; 2016 Dec; 269():78-88. PubMed ID: 27883983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical note: The Next Step - a semi-automatic coding and comparison system for forensic footwear impressions.
    Daniel O; Levi A; Pertsev R; Issan Y; Pasternak Z; Cohen A
    Forensic Sci Int; 2022 Aug; 337():111378. PubMed ID: 35839684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relevance of the evolution of experimental studies for the interpretation and evaluation of some trace physical evidence.
    Morgan RM; Cohen J; McGookin I; Murly-Gotto J; O'Connor R; Muress S; Freudiger-Bonzon J; Bull PA
    Sci Justice; 2009 Dec; 49(4):277-85. PubMed ID: 20120607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rates of loss and replacement of very small particles (VSP) on the contact surfaces of footwear during successive exposures.
    Stoney DA; Bowen AM; Ausdemore M; Stoney PL; Neumann C; Stoney FP
    Forensic Sci Int; 2019 Mar; 296():39-47. PubMed ID: 30677544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.
    Konopinski DI; Hudziak S; Morgan RM; Bull PA; Kenyon AJ
    Forensic Sci Int; 2012 Nov; 223(1-3):245-55. PubMed ID: 23088825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Location distribution of randomly acquired characteristics on a shoe sole.
    Kaplan-Damary N; Mandel M; Yekutieli Y; Shor Y; Wiesner S
    J Forensic Sci; 2022 Sep; 67(5):1801-1809. PubMed ID: 35855550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model.
    Morgan RM
    Sci Justice; 2017 Nov; 57(6):455-459. PubMed ID: 29173459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence of blood (DNA/RNA) on shoe soles under varying casework related conditions.
    Schmidt M; Kunz SN; Wiegand P; Bamberg M
    Forensic Sci Int Genet; 2022 Mar; 57():102648. PubMed ID: 34896976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Where should a school shoe provide flexibility and support for the asymptomatic 6- to 10-year-olds and on what information is this based? A Delphi yielded consensus.
    Davies N; Branthwaite H; Chockalingam N
    Prosthet Orthot Int; 2015 Jun; 39(3):213-8. PubMed ID: 24570017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of footwear evidence: Initial workflow for an end-to-end system.
    Venkatasubramanian G; Hegde V; Lund SP; Iyer H; Herman M
    J Forensic Sci; 2021 Nov; 66(6):2232-2251. PubMed ID: 34374992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the quality of footwear marks recovered from simulated graves.
    Stephens M; Errickson D; Giles SB; Ringrose TJ
    Sci Justice; 2020 Nov; 60(6):512-521. PubMed ID: 33077034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass particles in footwear of members of the public in south-eastern Australia--a survey.
    Roux C; Kirk R; Benson S; Van Haren T; Petterd CI
    Forensic Sci Int; 2001 Feb; 116(2-3):149-56. PubMed ID: 11182266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of grain size distribution analysis of sediments and soils in forensic enquiry.
    Morgan RM; Bull PA
    Sci Justice; 2007 Nov; 47(3):125-35. PubMed ID: 18051034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.