These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31054948)

  • 21. Automated analysis of behavior in zebrafish larvae.
    Creton R
    Behav Brain Res; 2009 Oct; 203(1):127-36. PubMed ID: 19409932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A High-Throughput Zebrafish Screening Method for Visual Mutants by Light-Induced Locomotor Response.
    Gao Y; Chan RH; Chow TW; Zhang L; Bonilla S; Pang CP; Zhang M; Leung YF
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):693-701. PubMed ID: 26356340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits.
    Eddins D; Cerutti D; Williams P; Linney E; Levin ED
    Neurotoxicol Teratol; 2010; 32(1):99-108. PubMed ID: 19268529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forward Genetic Screening Using Behavioral Tests in Zebrafish: A Proof of Concept Analysis of Mutants.
    Gerlai R; Poshusta TL; Rampersad M; Fernandes Y; Greenwood TM; Cousin MA; Klee EW; Clark KJ
    Behav Genet; 2017 Jan; 47(1):125-139. PubMed ID: 27704300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated high-throughput behavioral analyses in zebrafish larvae.
    Richendrfer H; Créton R
    J Vis Exp; 2013 Jul; (77):e50622. PubMed ID: 23851916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple and High-Throughput Rheotaxis Behavioral Assay for Zebrafish Larva.
    Tantry MSA; Harini VS; Santhakumar K
    Zebrafish; 2022 Jun; 19(3):114-118. PubMed ID: 35666213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicity and behavioural effects of ocfentanil and 2-furanylfentanyl in zebrafish larvae and mice.
    Bilel S; Murari M; Pesavento S; Arfè R; Tirri M; Torroni L; Marti M; Tagliaro F; Gottardo R
    Neurotoxicology; 2023 Mar; 95():83-93. PubMed ID: 36634872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designing microfluidic devices for behavioral screening of multiple zebrafish larvae.
    Khalili A; van Wijngaarden E; Youssef K; Zoidl GR; Rezai P
    Biotechnol J; 2022 Jan; 17(1):e2100076. PubMed ID: 34480402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of branchiomotor neurons in controlling food intake of zebrafish larvae.
    Allen JR; Bhattacharyya KD; Asante E; Almadi B; Schafer K; Davis J; Cox J; Voigt M; Viator JA; Chandrasekhar A
    J Neurogenet; 2017 Sep; 31(3):128-137. PubMed ID: 28812416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva.
    Duchemin A; Privat M; Sumbre G
    Front Neural Circuits; 2021; 15():814128. PubMed ID: 35069128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish.
    Knecht AL; Truong L; Simonich MT; Tanguay RL
    Neurotoxicol Teratol; 2017; 59():27-34. PubMed ID: 27989697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Social Experience on the Habituation Rate of Zebrafish Startle Escape Response: Empirical and Computational Analyses.
    Park C; Clements KN; Issa FA; Ahn S
    Front Neural Circuits; 2018; 12():7. PubMed ID: 29459823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a quantitative morphological assessment of toxicant-treated zebrafish larvae using brightfield imaging and high-content analysis.
    Deal S; Wambaugh J; Judson R; Mosher S; Radio N; Houck K; Padilla S
    J Appl Toxicol; 2016 Sep; 36(9):1214-22. PubMed ID: 26924781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold.
    Santistevan NJ; Nelson JC; Ortiz EA; Miller AH; Kenj Halabi D; Sippl ZA; Granato M; Grinblat Y
    PLoS One; 2022; 17(7):e0270903. PubMed ID: 35834485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish.
    Randlett O; Haesemeyer M; Forkin G; Shoenhard H; Schier AF; Engert F; Granato M
    Curr Biol; 2019 Apr; 29(8):1337-1345.e4. PubMed ID: 30955936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micronized Curcumin Causes Hyperlocomotion in Zebrafish Larvae.
    Sachett A; Benvenutti R; Reis CG; Gallas-Lopes M; Bastos LM; Aguiar GPS; Herrmann AP; Oliveira JV; Siebel AM; Piato A
    Neurochem Res; 2022 Aug; 47(8):2307-2316. PubMed ID: 35536434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism.
    Dwivedi S; Medishetti R; Rani R; Sevilimedu A; Kulkarni P; Yogeeswari P
    J Pharmacol Toxicol Methods; 2019; 95():56-65. PubMed ID: 30500431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light-stimulus intensity modulates startle reflex habituation in larval zebrafish.
    Beppi C; Beringer G; Straumann D; Bögli SY
    Sci Rep; 2021 Nov; 11(1):22410. PubMed ID: 34789729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early asymmetries in the behaviour of zebrafish larvae.
    Watkins J; Miklósi A; Andrew RJ
    Behav Brain Res; 2004 May; 151(1-2):177-83. PubMed ID: 15084433
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.