BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31054950)

  • 1. Plant genome editing using xCas9 with expanded PAM compatibility.
    Li J; Luo J; Xu M; Li S; Zhang J; Li H; Yan L; Zhao Y; Xia L
    J Genet Genomics; 2019 May; 46(5):277-280. PubMed ID: 31054950
    [No Abstract]   [Full Text] [Related]  

  • 2. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR
    Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.
    Kim HK; Lee S; Kim Y; Park J; Min S; Choi JW; Huang TP; Yoon S; Liu DR; Kim HH
    Nat Biomed Eng; 2020 Jan; 4(1):111-124. PubMed ID: 31937939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7).
    Liu Z; Chen M; Shan H; Chen S; Xu Y; Song Y; Zhang Q; Yuan H; Ouyang H; Li Z; Lai L
    Cell Mol Life Sci; 2019 Oct; 76(20):4155-4164. PubMed ID: 31030226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.
    Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP
    Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures.
    Gleditzsch D; Pausch P; Müller-Esparza H; Özcan A; Guo X; Bange G; Randau L
    RNA Biol; 2019 Apr; 16(4):504-517. PubMed ID: 30109815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding base editing scope to near-PAMless with engineered CRISPR/Cas9 variants in plants.
    Zhang C; Wang Y; Wang F; Zhao S; Song J; Feng F; Zhao J; Yang J
    Mol Plant; 2021 Feb; 14(2):191-194. PubMed ID: 33383202
    [No Abstract]   [Full Text] [Related]  

  • 11. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Base Editing Systems Are Available for Plants.
    Marzec M; Hensel G
    Trends Plant Sci; 2018 Nov; 23(11):955-957. PubMed ID: 30224156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
    Zhang D; Li Z; Li JF
    J Genet Genomics; 2016 May; 43(5):251-62. PubMed ID: 27165865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise A·T to G·C Base Editing in the Rice Genome.
    Hua K; Tao X; Yuan F; Wang D; Zhu JK
    Mol Plant; 2018 Apr; 11(4):627-630. PubMed ID: 29476916
    [No Abstract]   [Full Text] [Related]  

  • 15. The CRISPR/Cas9 Genome Editing Revolution.
    Jiao R; Gao C
    J Genet Genomics; 2016 May; 43(5):227-8. PubMed ID: 27256542
    [No Abstract]   [Full Text] [Related]  

  • 16. A Single Transcript CRISPR-Cas9 System for Efficient Genome Editing in Plants.
    Tang X; Zheng X; Qi Y; Zhang D; Cheng Y; Tang A; Voytas DF; Zhang Y
    Mol Plant; 2016 Jul; 9(7):1088-91. PubMed ID: 27212389
    [No Abstract]   [Full Text] [Related]  

  • 17. CRISPR-Cas: more than ten years and still full of mysteries.
    Charpentier E; Elsholz A; Marchfelder A
    RNA Biol; 2019 Apr; 16(4):377-379. PubMed ID: 31009325
    [No Abstract]   [Full Text] [Related]  

  • 18. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells.
    Li T; Zhu L; Xiao B; Gong Z; Liao Q; Guo J
    Biotechnol Adv; 2019; 37(1):21-27. PubMed ID: 30399413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the base editing scope to GA and relaxed NG PAM sites by improved xCas9 system.
    Zhang C; Xu W; Wang F; Kang G; Yuan S; Lv X; Li L; Liu Y; Yang J
    Plant Biotechnol J; 2020 Apr; 18(4):884-886. PubMed ID: 31545544
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.