BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 31055143)

  • 1. Dynamic heat transfer and thermal performance evaluation of PCM-doped hybrid hollow plaster panels for buildings.
    Wi S; Yang S; Lee J; Chang SJ; Kim S
    J Hazard Mater; 2019 Jul; 374():428-436. PubMed ID: 31055143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete.
    Dong Z; Cui H; Tang W; Chen D; Wen H
    Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage.
    Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV
    Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage.
    Wang E; Kong X; Rong X; Yao C; Yang H; Qi C
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage.
    Li M; Guo Q; Nutt S
    Sol Energy; 2017 Apr; 146():1-7. PubMed ID: 28579647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Molecular PCM Wall with Inorganic Composite: Dynamic Thermal Analysis and Optimization in Charge-Discharge Cycles.
    Yang Q; Xiong J; Mao G; Zhang Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. n-Octadecane/Fumed Silica Phase Change Composite as Building Envelope for High Energy Efficiency.
    Nguyen GT; Hwang HS; Lee J; Cha DA; Park I
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33668398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Sugar Alcohol/Carbonized Kapok Fiber Composites as Form-Stable Phase-Change Materials with Exceptionally High Latent Heat for Thermal Energy Storage.
    An J; Liang W; Mu P; Wang C; Chen T; Zhu Z; Sun H; Li A
    ACS Omega; 2019 Mar; 4(3):4848-4855. PubMed ID: 31459669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal properties and behavior of microencapsulated sugarcane wax phase change material.
    Tangsiriratana E; Skolpap W; Patterson RJ; Sriprapha K
    Heliyon; 2019 Aug; 5(8):e02184. PubMed ID: 31463385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and Mechanical Properties of Expanded Graphite/Paraffin Gypsum-Based Composite Material Reinforced by Carbon Fiber.
    Zhang B; Tian Y; Jin X; Lo TY; Cui H
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30405038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and Thermal Performance of Fatty Acid Binary Eutectic Mixture/Expanded Graphite Composites as Form-Stable Phase Change Materials for Thermal Energy Storage.
    Zhou D; Xiao S; Xiao X
    ACS Omega; 2023 Mar; 8(9):8596-8604. PubMed ID: 36910934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES).
    Höhlein S; König-Haagen A; Brüggemann D
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and analysis of phase change material based floor heating system for thermal energy storage.
    Yun BY; Yang S; Cho HM; Chang SJ; Kim S
    Environ Res; 2019 Jun; 173():480-488. PubMed ID: 30986650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Surface Functionalization and Physical Properties of Nanoinclusions on Thermal Conductivity Enhancement in an Organic Phase Change Material.
    Mishra AK; Lahiri BB; Philip J
    ACS Omega; 2018 Aug; 3(8):9487-9504. PubMed ID: 31459082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation.
    Jeon J; Park JH; Wi S; Yang S; Ok YS; Kim S
    Chemosphere; 2019 Dec; 236():124269. PubMed ID: 31319304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities.
    Atinafu DG; Yun BY; Wi S; Kang Y; Kim S
    Environ Res; 2021 Apr; 195():110853. PubMed ID: 33567299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal storage properties of lightweight concrete incorporating phase change materials with different fusion points in hybrid form for high temperature applications.
    Sukontasukkul P; Sangpet T; Newlands M; Yoo DY; Tangchirapat W; Limkatanyu S; Chindaprasirt P
    Heliyon; 2020 Sep; 6(9):e04863. PubMed ID: 32954037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of a Sustainable Shape-Stabilized Phase Change Material for Thermal Energy Storage Based on Mg
    Zahir MH; Rahman MM; Basamad SKS; Mohaisen KO; Irshad K; Rahman MM; Aziz MA; Ali A; Hossain MM
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Thermal Buffering of Phase Change Materials by the Intramicrocapsule Sub per Mille CNT Dopant.
    Mikhaylov AA; Sladkevich S; Medvedev AG; Prikhodchenko PV; Gun J; Sakharov KA; Xu ZJ; Kulish V; Nikolaev VA; Lev O
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16227-16235. PubMed ID: 32167739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.