These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 31055712)
1. A metabolomic approach to understand the solid-state fermentation of okara using Bacillus subtilis WX-17 for enhanced nutritional profile. Mok WK; Tan YX; Lee J; Kim J; Chen WN AMB Express; 2019 May; 9(1):60. PubMed ID: 31055712 [TBL] [Abstract][Full Text] [Related]
2. Effects of submerged liquid fermentation of Mok WK; Tan YX; Lyu XM; Chen WN Food Sci Nutr; 2020 Jul; 8(7):3119-3127. PubMed ID: 32724576 [TBL] [Abstract][Full Text] [Related]
3. LC-MS based metabolomics analysis of okara fermented by Bacillus subtilis DC-15: Insights into nutritional and functional profile. Zhan Q; Thakur K; Feng JY; Zhu YY; Zhang JG; Wei ZJ Food Chem; 2023 Jul; 413():135656. PubMed ID: 36780856 [TBL] [Abstract][Full Text] [Related]
4. Potential novel nutritional beverage using submerged fermentation with Tan YX; Mok WK; Chen WN Heliyon; 2020 Jun; 6(6):e04155. PubMed ID: 32551388 [TBL] [Abstract][Full Text] [Related]
5. Analysis of Improved Nutritional Composition of Potential Functional Food (Okara) after Probiotic Solid-State Fermentation. Gupta S; Lee JJL; Chen WN J Agric Food Chem; 2018 May; 66(21):5373-5381. PubMed ID: 29775057 [TBL] [Abstract][Full Text] [Related]
6. Effects of sources of carbon and nitrogen on production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. Zhu YP; Yin LJ; Cheng YQ; Yamaki K; Mori Y; Su YC; Li LT Food Chem; 2008 Aug; 109(4):737-42. PubMed ID: 26049986 [TBL] [Abstract][Full Text] [Related]
7. In Vitro Evaluation of Enriched Brewers' Spent Grains Using Bacillus subtilis WX-17 as Potential Functional Food Ingredients. Tan YX; Mok WK; Chen WN Appl Biochem Biotechnol; 2021 Feb; 193(2):349-362. PubMed ID: 32968964 [TBL] [Abstract][Full Text] [Related]
8. A metabolomics approach to evaluate post-fermentation enhancement of daidzein and genistein in a green okara extract. Gupta S; Chen WN J Sci Food Agric; 2021 Sep; 101(12):5124-5131. PubMed ID: 33608899 [TBL] [Abstract][Full Text] [Related]
9. Solid-State Fermented Okara with Ichikawa N; Ng LS; Makino S; Goh LL; Lim YJ; Ferdinandus ; Sasaki H; Shibata S; Lee CK Metabolites; 2022 Feb; 12(3):. PubMed ID: 35323642 [TBL] [Abstract][Full Text] [Related]
10. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Vong WC; Au Yang KL; Liu SQ Int J Food Microbiol; 2016 Oct; 235():1-9. PubMed ID: 27391864 [TBL] [Abstract][Full Text] [Related]
11. Gao YX; Xu B; Fan HR; Zhang MR; Zhang LJ; Lu C; Zhang NN; Fan B; Wang FZ; Li S Food Res Int; 2020 Dec; 138(Pt A):109686. PubMed ID: 33292958 [TBL] [Abstract][Full Text] [Related]
12. Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (Meitaoza). Zhu YP; Yamaki K; Yoshihashi T; Ohnishi Kameyama M; Li XT; Cheng YQ; Mori Y; Li LT J Agric Food Chem; 2010 Apr; 58(7):4097-103. PubMed ID: 20196601 [TBL] [Abstract][Full Text] [Related]
13. Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts. Vong WC; Liu SQ J Sci Food Agric; 2017 Jan; 97(1):135-143. PubMed ID: 26940283 [TBL] [Abstract][Full Text] [Related]
14. Effect of two-step fermentation by Sugiharto S; Isroli I; Yudiarti T; Widiastuti E; Wahyuni HI; Sartono TA J Adv Vet Anim Res; 2018 Dec; 5(4):472-480. PubMed ID: 31453160 [TBL] [Abstract][Full Text] [Related]
15. Biotransformation with cellulase, hemicellulase and Yarrowia lipolytica boosts health benefits of okara. Vong WC; Lim XY; Liu SQ Appl Microbiol Biotechnol; 2017 Oct; 101(19):7129-7140. PubMed ID: 28801839 [TBL] [Abstract][Full Text] [Related]
16. Production of acetoin and its derivative tetramethylpyrazine from okara hydrolysate with Bacillus subtilis. Li T; Liu P; Guo G; Liu Z; Zhong L; Guo L; Chen C; Hao N; Ouyang P AMB Express; 2023 Feb; 13(1):25. PubMed ID: 36853576 [TBL] [Abstract][Full Text] [Related]
17. Functionalization of soy residue (okara) by enzymatic hydrolysis and LAB fermentation for B Wang R; Thakur K; Feng JY; Zhu YY; Zhang F; Russo P; Spano G; Zhang JG; Wei ZJ Food Chem; 2022 Sep; 387():132947. PubMed ID: 35427869 [TBL] [Abstract][Full Text] [Related]
18. Erythritol production by Yarrowia lipolytica from okara pretreated with the in-house enzyme pools of fungi. Liu X; Yu X; Xia J; Lv J; Xu J; Dai B; Xu X; Xu J Bioresour Technol; 2017 Nov; 244(Pt 1):1089-1095. PubMed ID: 28854485 [TBL] [Abstract][Full Text] [Related]
19. Release of health-related compounds during in vitro gastro-intestinal digestion of okara and okara fermented with Quintana G; Spínola V; Martins GN; Gerbino E; Gómez-Zavaglia A; Castilho PC J Food Sci Technol; 2020 Mar; 57(3):1061-1070. PubMed ID: 32123427 [TBL] [Abstract][Full Text] [Related]
20. Comparison of antioxidants potential, metabolites, and nutritional profiles of Korean fermented soybean ( Ali MW; Shahzad R; Bilal S; Adhikari B; Kim ID; Lee JD; Lee IJ; Kim BO; Shin DH J Food Sci Technol; 2018 Aug; 55(8):2871-2880. PubMed ID: 30065396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]