BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 31055963)

  • 1. [Three-dimensional virtual and printed models improve preoperative planning and promote patient-safety in complex congenital and pediatric cardiac surgery].
    Király L
    Orv Hetil; 2019 May; 160(19):747-755. PubMed ID: 31055963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery-A Multidisciplinary Team-Learning Experience.
    Kiraly L; Shah NC; Abdullah O; Al-Ketan O; Rowshan R
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery.
    Kiraly L
    Transl Pediatr; 2018 Apr; 7(2):129-138. PubMed ID: 29770294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects.
    Olejník P; Nosal M; Havran T; Furdova A; Cizmar M; Slabej M; Thurzo A; Vitovic P; Klvac M; Acel T; Masura J
    Kardiol Pol; 2017; 75(5):495-501. PubMed ID: 28281732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Application and Multidisciplinary Assessment of Three Dimensional Printing in Double Outlet Right Ventricle With Remote Ventricular Septal Defect.
    Garekar S; Bharati A; Chokhandre M; Mali S; Trivedi B; Changela VP; Solanki N; Gaikwad S; Agarwal V
    World J Pediatr Congenit Heart Surg; 2016 May; 7(3):344-50. PubMed ID: 27142402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing and virtual surgery for congenital heart procedural planning.
    Moore RA; Riggs KW; Kourtidou S; Schneider K; Szugye N; Troja W; D'Souza G; Rattan M; Bryant R; Taylor MD; Morales DLS
    Birth Defects Res; 2018 Aug; 110(13):1082-1090. PubMed ID: 30079634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific three-dimensional printed heart models benefit preoperative planning for complex congenital heart disease.
    Xu JJ; Luo YJ; Wang JH; Xu WZ; Shi Z; Fu JZ; Shu Q
    World J Pediatr; 2019 Jun; 15(3):246-254. PubMed ID: 30796731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: Early experience and proof of concept in a resource-limited environment.
    Kappanayil M; Koneti NR; Kannan RR; Kottayil BP; Kumar K
    Ann Pediatr Cardiol; 2017; 10(2):117-125. PubMed ID: 28566818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study.
    Valverde I; Gomez-Ciriza G; Hussain T; Suarez-Mejias C; Velasco-Forte MN; Byrne N; Ordoñez A; Gonzalez-Calle A; Anderson D; Hazekamp MG; Roest AAW; Rivas-Gonzalez J; Uribe S; El-Rassi I; Simpson J; Miller O; Ruiz E; Zabala I; Mendez A; Manso B; Gallego P; Prada F; Cantinotti M; Ait-Ali L; Merino C; Parry A; Poirier N; Greil G; Razavi R; Gomez-Cia T; Hosseinpour AR
    Eur J Cardiothorac Surg; 2017 Dec; 52(6):1139-1148. PubMed ID: 28977423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair.
    Kiraly L; Tofeig M; Jha NK; Talo H
    Interact Cardiovasc Thorac Surg; 2016 Feb; 22(2):238-40. PubMed ID: 26590304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing of Congenital Heart Disease Models for Cardiac Surgery Simulation: Evaluation of Surgical Skill Improvement among Inexperienced Cardiothoracic Surgeons.
    Nam JG; Lee W; Jeong B; Park EA; Lim JY; Kwak Y; Lim HG
    Korean J Radiol; 2021 May; 22(5):706-713. PubMed ID: 33543844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional virtual and printed models for planning adult cardiovascular surgery.
    Borracci RA; Ferreira LM; Alvarez Gallesio JM; Tenorio Núñez OM; David M; Eyheremendy EP
    Acta Cardiol; 2021 Jul; 76(5):534-543. PubMed ID: 33283655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of a super-flexible three-dimensional printed heart model in congenital heart surgery.
    Hoashi T; Ichikawa H; Nakata T; Shimada M; Ozawa H; Higashida A; Kurosaki K; Kanzaki S; Shiraishi I
    Interact Cardiovasc Thorac Surg; 2018 Nov; 27(5):749-755. PubMed ID: 29846596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Just-In-Time" Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery.
    Olivieri LJ; Su L; Hynes CF; Krieger A; Alfares FA; Ramakrishnan K; Zurakowski D; Marshall MB; Kim PC; Jonas RA; Nath DS
    World J Pediatr Congenit Heart Surg; 2016 Mar; 7(2):164-8. PubMed ID: 26957398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training.
    Chen SA; Ong CS; Malguria N; Vricella LA; Garcia JR; Hibino N
    World J Pediatr Congenit Heart Surg; 2018 Jul; 9(4):454-458. PubMed ID: 29945510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-center experience with routine clinical use of 3D technologies in surgical planning for pediatric patients with complex congenital heart disease.
    Yıldız O; Köse B; Tanıdır IC; Pekkan K; Güzeltaş A; Haydin S
    Diagn Interv Radiol; 2021 Jul; 27(4):488-496. PubMed ID: 34313233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease.
    Brun H; Bugge RAB; Suther LKR; Birkeland S; Kumar R; Pelanis E; Elle OJ
    Eur Heart J Cardiovasc Imaging; 2019 Aug; 20(8):883-888. PubMed ID: 30534951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Value of 3D printing for the comprehension of surgical anatomy.
    Marconi S; Pugliese L; Botti M; Peri A; Cavazzi E; Latteri S; Auricchio F; Pietrabissa A
    Surg Endosc; 2017 Oct; 31(10):4102-4110. PubMed ID: 28281114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific three-dimensional printing for Kommerell's diverticulum.
    Sun X; Zhang H; Zhu K; Wang C
    Int J Cardiol; 2018 Mar; 255():184-187. PubMed ID: 29290421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing for Cardiovascular Surgery and Intervention: A Review Article.
    Shabbak A; Masoumkhani F; Fallah A; Amani-Beni R; Mohammadpour H; Shahbazi T; Bakhshi A
    Curr Probl Cardiol; 2024 Jan; 49(1 Pt B):102086. PubMed ID: 37716537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.