These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 31056044)
1. Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework. Chowell G; Mizumoto K; Banda JM; Poccia S; Perrings C Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180272. PubMed ID: 31056044 [TBL] [Abstract][Full Text] [Related]
2. Impacts of climate change on water-related mosquito-borne diseases in temperate regions: A systematic review of literature and meta-analysis. Gizaw Z; Salubi E; Pietroniro A; Schuster-Wallace CJ Acta Trop; 2024 Oct; 258():107324. PubMed ID: 39009235 [TBL] [Abstract][Full Text] [Related]
3. Harris County Public Health Mosquito and Vector Control Division Emergency Response to Hurricane Harvey: Vector-Borne Disease Surveillance and Control. Vigilant M; Battle-Freeman C; Braumuller KC; Riley R; Fredregill CL J Am Mosq Control Assoc; 2020 Jun; 36(2s):15-27. PubMed ID: 33647149 [TBL] [Abstract][Full Text] [Related]
4. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Zhang W; Villarini G; Vecchi GA; Smith JA Nature; 2018 Nov; 563(7731):384-388. PubMed ID: 30429551 [TBL] [Abstract][Full Text] [Related]
5. Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Caldwell JM; LaBeaud AD; Lambin EF; Stewart-Ibarra AM; Ndenga BA; Mutuku FM; Krystosik AR; Ayala EB; Anyamba A; Borbor-Cordova MJ; Damoah R; Grossi-Soyster EN; Heras FH; Ngugi HN; Ryan SJ; Shah MM; Sippy R; Mordecai EA Nat Commun; 2021 Feb; 12(1):1233. PubMed ID: 33623008 [TBL] [Abstract][Full Text] [Related]
6. Modelling climate change and malaria transmission. Parham PE; Michael E Adv Exp Med Biol; 2010; 673():184-99. PubMed ID: 20632538 [TBL] [Abstract][Full Text] [Related]
7. Climate drivers of vector-borne diseases in Africa and their relevance to control programmes. Thomson MC; Muñoz ÁG; Cousin R; Shumake-Guillemot J Infect Dis Poverty; 2018 Aug; 7(1):81. PubMed ID: 30092816 [TBL] [Abstract][Full Text] [Related]
8. Reproductive phase locking of mosquito populations in response to rainfall frequency. Shaman J; Day JF PLoS One; 2007 Mar; 2(3):e331. PubMed ID: 17396162 [TBL] [Abstract][Full Text] [Related]
9. Building resilience to mosquito-borne diseases in the Caribbean. Lowe R; Ryan SJ; Mahon R; Van Meerbeeck CJ; Trotman AR; Boodram LG; Borbor-Cordova MJ; Stewart-Ibarra AM PLoS Biol; 2020 Nov; 18(11):e3000791. PubMed ID: 33232312 [TBL] [Abstract][Full Text] [Related]
10. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Bezirtzoglou C; Dekas K; Charvalos E Anaerobe; 2011 Dec; 17(6):337-40. PubMed ID: 21664978 [TBL] [Abstract][Full Text] [Related]
11. Critical transitions in malaria transmission models are consistently generated by superinfection. Alonso D; Dobson A; Pascual M Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180275. PubMed ID: 31056048 [TBL] [Abstract][Full Text] [Related]
12. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France. Roiz D; Boussès P; Simard F; Paupy C; Fontenille D PLoS Negl Trop Dis; 2015 Jun; 9(6):e0003854. PubMed ID: 26079620 [TBL] [Abstract][Full Text] [Related]
13. Assessing the interplay between human mobility and mosquito borne diseases in urban environments. Massaro E; Kondor D; Ratti C Sci Rep; 2019 Nov; 9(1):16911. PubMed ID: 31729435 [TBL] [Abstract][Full Text] [Related]
15. Modeling the effect of rainfall changes to predict population dynamics of the Asian tiger mosquito Aedes albopictus under future climate conditions. Fukui S; Kuwano Y; Ueno K; Atsumi K; Ohta S PLoS One; 2022; 17(5):e0268211. PubMed ID: 35613220 [TBL] [Abstract][Full Text] [Related]
16. Mosquito species identity matters: unraveling the complex interplay in vector-borne diseases. Ferraguti M Infect Dis (Lond); 2024 Sep; 56(9):685-696. PubMed ID: 38795138 [TBL] [Abstract][Full Text] [Related]
17. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use. Aldila D; Seno H Bull Math Biol; 2019 Dec; 81(12):4977-5008. PubMed ID: 31595380 [TBL] [Abstract][Full Text] [Related]
18. A general modeling framework for exploring the impact of individual concern and personal protection on vector-borne disease dynamics. Roosa K; Fefferman NH Parasit Vectors; 2022 Oct; 15(1):361. PubMed ID: 36209182 [TBL] [Abstract][Full Text] [Related]
19. The Complex Epidemiological Relationship between Flooding Events and Human Outbreaks of Mosquito-Borne Diseases: A Scoping Review. Coalson JE; Anderson EJ; Santos EM; Madera Garcia V; Romine JK; Dominguez B; Richard DM; Little AC; Hayden MH; Ernst KC Environ Health Perspect; 2021 Sep; 129(9):96002. PubMed ID: 34582261 [TBL] [Abstract][Full Text] [Related]
20. Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria. Akhmetzhanov AR; Asai Y; Nishiura H Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180268. PubMed ID: 31056054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]