These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 31056079)

  • 1. Dispersion in porous media in oscillatory flow between flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the central nervous system.
    Keith Sharp M; Carare RO; Martin BA
    Fluids Barriers CNS; 2019 May; 16(1):13. PubMed ID: 31056079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of tracer transport in cerebral perivascular spaces.
    Faghih MM; Keith Sharp M
    J Biomech; 2021 Mar; 118():110278. PubMed ID: 33548658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is bulk flow plausible in perivascular, paravascular and paravenous channels?
    Faghih MM; Sharp MK
    Fluids Barriers CNS; 2018 Jun; 15(1):17. PubMed ID: 29903035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear dispersion in a capillary tube with a porous wall.
    Dejam M; Hassanzadeh H; Chen Z
    J Contam Hydrol; 2016; 185-186():87-104. PubMed ID: 26845232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion as a waste-clearance mechanism in flow through penetrating perivascular spaces in the brain.
    Troyetsky DE; Tithof J; Thomas JH; Kelley DH
    Sci Rep; 2021 Feb; 11(1):4595. PubMed ID: 33633194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Langevin model for reactive transport in porous media.
    Tartakovsky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026302. PubMed ID: 20866900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery.
    Pizzo ME; Wolak DJ; Kumar NN; Brunette E; Brunnquell CL; Hannocks MJ; Abbott NJ; Meyerand ME; Sorokin L; Stanimirovic DB; Thorne RG
    J Physiol; 2018 Feb; 596(3):445-475. PubMed ID: 29023798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore-scale modeling of dispersion in disordered porous media.
    Ovaysi S; Piri M
    J Contam Hydrol; 2011 Jun; 124(1-4):68-81. PubMed ID: 21440952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of anatomical fine structure on the dispersion of solutes in the spinal subarachnoid space.
    Stockman HW
    J Biomech Eng; 2007 Oct; 129(5):666-75. PubMed ID: 17887892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion modeling in pore networks: A comparison of common pore-scale models and alternative approaches.
    Sadeghi MA; Agnaou M; Barralet J; Gostick J
    J Contam Hydrol; 2020 Jan; 228():103578. PubMed ID: 31767229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase offset between arterial pulsations and subarachnoid space pressure fluctuations are unlikely to drive periarterial cerebrospinal fluid flow.
    Martinac AD; Fletcher DF; Bilston LE
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1751-1766. PubMed ID: 34275063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive model of solute transport with reversible adsorption in spatially periodic hierarchical porous media.
    Yan X; Wang Q; Li N
    J Chromatogr A; 2015 Aug; 1407():69-75. PubMed ID: 26145453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space.
    Gupta S; Soellinger M; Boesiger P; Poulikakos D; Kurtcuoglu V
    J Biomech Eng; 2009 Feb; 131(2):021010. PubMed ID: 19102569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method of model reduction and multifidelity models for solute transport in random layered porous media.
    Xu Z; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033314. PubMed ID: 29346901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study.
    Rey J; Sarntinoranont M
    Fluids Barriers CNS; 2018 Jul; 15(1):20. PubMed ID: 30012159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applicability regimes for macroscopic models of reactive transport in porous media.
    Battiato I; Tartakovsky DM
    J Contam Hydrol; 2011 Mar; 120-121():18-26. PubMed ID: 20598771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of diffusion on transverse dispersion in two-dimensional ordered and random porous media.
    Hlushkou D; Piatrusha S; Tallarek U
    Phys Rev E; 2017 Jun; 95(6-1):063108. PubMed ID: 28709263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D vs. 3-D flow-through systems.
    Ye Y; Chiogna G; Cirpka O; Grathwohl P; Rolle M
    J Contam Hydrol; 2015 Jan; 172():33-47. PubMed ID: 25462641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous transport and chaotic advection in homogeneous porous media.
    Lester DR; Metcalfe G; Trefry MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063012. PubMed ID: 25615192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.
    Smith AJ; Yao X; Dix JA; Jin BJ; Verkman AS
    Elife; 2017 Aug; 6():. PubMed ID: 28826498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.