BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31056082)

  • 1. Effect of temporally heterogeneous light on photosynthetic light use efficiency, plant acclimation and growth in Abatia parviflora.
    Rey-Sanchez C; Posada JM
    Funct Plant Biol; 2019 Jun; 46(7):684-693. PubMed ID: 31056082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content.
    Posada JM; Lechowicz MJ; Kitajima K
    Ann Bot; 2009 Mar; 103(5):795-805. PubMed ID: 19151040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species.
    Naumburg E; Ellsworth DS
    Tree Physiol; 2002 Apr; 22(6):393-401. PubMed ID: 11960764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.
    Posada JM; Sievänen R; Messier C; Perttunen J; Nikinmaa E; Lechowicz MJ
    Ann Bot; 2012 Aug; 110(3):731-41. PubMed ID: 22665700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.
    Li T; Heuvelink E; Dueck TA; Janse J; Gort G; Marcelis LF
    Ann Bot; 2014 Jul; 114(1):145-56. PubMed ID: 24782436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global evidence for the acclimation of ecosystem photosynthesis to light.
    Luo X; Keenan TF
    Nat Ecol Evol; 2020 Oct; 4(10):1351-1357. PubMed ID: 32747771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis).
    Hieke S; Menzel CM; Lüdders P
    Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in photosynthetic photon flux density within a tropical seasonal rain forest of Xishuangbanna, south-western China.
    Dou JX; Zhang YP; Feng ZW; Liu WJ
    J Environ Sci (China); 2005; 17(6):966-9. PubMed ID: 16465888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced systemic regulation of photosynthesis in primary and trifoliate leaves of Phaseolus vulgaris: effects of photosynthetic photon flux density (PPFD) versus spectrum.
    Murakami K; Matsuda R; Fujiwara K
    Plant Biol (Stuttg); 2014 Jan; 16(1):16-21. PubMed ID: 23889848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient.
    Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y
    Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration.
    Frak E; Le Roux X; Millard P; Adam B; Dreyer E; Escuit C; Sinoquet H; Vandame M; Varlet-Grancher C
    J Exp Bot; 2002 Nov; 53(378):2207-16. PubMed ID: 12379788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Only Extreme Fluctuations in Light Levels Reduce Lettuce Growth Under Sole Source Lighting.
    Bhuiyan R; van Iersel MW
    Front Plant Sci; 2021; 12():619973. PubMed ID: 33584773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal changes in light and temperature affect the balance between light harvesting and light utilisation components of photosynthesis in an evergreen understory shrub.
    Muller O; Hikosaka K; Hirose T
    Oecologia; 2005 May; 143(4):501-8. PubMed ID: 15761779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrelationships among light, photosynthesis and nitrogen in the crown of mature Pinus contorta ssp. latifolia.
    Schoettle AW; Smith WK
    Tree Physiol; 1999 Jan; 19(1):13-22. PubMed ID: 12651327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon gain and photosynthetic response of chrysanthemum to photosynthetic photon flux density cycles.
    Stoop JM; Willits DH; Peet MM; Nelson PV
    Plant Physiol; 1991 Jun; 96(2):529-36. PubMed ID: 16668218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms.
    Liu J; van Iersel MW
    Front Plant Sci; 2021; 12():619987. PubMed ID: 33747002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appropriate time interval of PPFD measurement to estimate daily photosynthetic gain.
    Murakami K; Jishi T
    Funct Plant Biol; 2022 May; 49(6):452-462. PubMed ID: 33549153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic acclimation in relation to nitrogen allocation in cucumber leaves in response to changes in irradiance.
    Trouwborst G; Hogewoning SW; Harbinson J; van Ieperen W
    Physiol Plant; 2011 Jun; 142(2):157-69. PubMed ID: 21320128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes.
    Gardiner ES; Krauss KW
    Tree Physiol; 2001 Sep; 21(15):1103-11. PubMed ID: 11581017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the enhancement of photosynthetic rate in a komatsuna (
    Saito K; Goto E
    Front Plant Sci; 2023; 14():1111338. PubMed ID: 37035046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.