BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 31056258)

  • 1. Long noncoding RNA SNHG7 inhibits high glucose-induced human retinal endothelial cells angiogenesis by regulating miR-543/SIRT1 axis.
    Ke N; Pi LH; Liu Q; Chen L
    Biochem Biophys Res Commun; 2019 Jun; 514(2):503-509. PubMed ID: 31056258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis.
    Cao X; Xue LD; Di Y; Li T; Tian YJ; Song Y
    Life Sci; 2021 May; 272():119232. PubMed ID: 33600866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis.
    Liu P; Jia SB; Shi JM; Li WJ; Tang LS; Zhu XH; Tong P
    Biosci Rep; 2019 May; 39(5):. PubMed ID: 30988072
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcriptome analysis identified a novel 3-LncRNA regulatory network of transthyretin attenuating glucose induced hRECs dysfunction in diabetic retinopathy.
    Shao J; Zhang Y; Fan G; Xin Y; Yao Y
    BMC Med Genomics; 2019 Oct; 12(1):134. PubMed ID: 31615521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockdown of Malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis.
    Tan A; Li T; Ruan L; Yang J; Luo Y; Li L; Wu X
    Exp Eye Res; 2021 Jun; 207():108585. PubMed ID: 33887222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LncRNA FENDRR promotes high-glucose-induced proliferation and angiogenesis of human retinal endothelial cells.
    Shi Y; Chen C; Xu Y; Liu Y; Zhang H; Liu Y
    Biosci Biotechnol Biochem; 2019 May; 83(5):869-875. PubMed ID: 30700211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ginsenoside Rg1 Inhibits High Glucose-Induced Proliferation, Migration, and Angiogenesis in Retinal Endothelial Cells by Regulating the lncRNA SNHG7/miR-2116-5p/SIRT3 Axis.
    Xue L; Hu M; Li J; Li Y; Zhu Q; Zhou G; Zhang X; Zhou Y; Zhang J; Ding P
    J Oncol; 2022; 2022():6184631. PubMed ID: 36510610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long non-coding ribonucleic acid urothelial carcinoma-associated 1 promotes high glucose-induced human retinal endothelial cells angiogenesis through regulating micro-ribonucleic acid-624-3p/vascular endothelial growth factor C.
    Yan H; Yao P; Hu K; Li X; Li H
    J Diabetes Investig; 2021 Nov; 12(11):1948-1957. PubMed ID: 34137197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-regulation of miR-377 suppresses high glucose and hypoxia-induced angiogenesis and inflammation in human retinal endothelial cells by direct up-regulation of target gene SIRT1.
    Cui C; Li Y; Liu Y
    Hum Cell; 2019 Jul; 32(3):260-274. PubMed ID: 30706373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long noncoding RNA MALAT1 participates in the pathological angiogenesis of diabetic retinopathy in an oxygen-induced retinopathy mouse model by sponging miR-203a-3p.
    Yu L; Fu J; Yu N; Wu Y; Han N
    Can J Physiol Pharmacol; 2020 Apr; 98(4):219-227. PubMed ID: 31689123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and YAP/HIF1α/VEGFA depletion.
    Pan Q; Gao Z; Zhu C; Peng Z; Song M; Li L
    Am J Physiol Endocrinol Metab; 2020 Nov; 319(5):E932-E943. PubMed ID: 32776826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of NEAT1 exerts suppressive effects on diabetic retinopathy progression via inactivating TGF-β1 and VEGF signaling pathways.
    Shao K; Xi L; Cang Z; Chen C; Huang S
    J Cell Physiol; 2020 Dec; 235(12):9361-9369. PubMed ID: 32356340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-152 represses VEGF and TGFβ1 expressions through post-transcriptional inhibition of (Pro)renin receptor in human retinal endothelial cells.
    Haque R; Hur EH; Farrell AN; Iuvone PM; Howell JC
    Mol Vis; 2015; 21():224-35. PubMed ID: 25802486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy.
    Zou J; Liu KC; Wang WP; Xu Y
    Life Sci; 2020 Sep; 256():117888. PubMed ID: 32497630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-34a promotes apoptosis of retinal vascular endothelial cells by targeting SIRT1 in rats with diabetic retinopathy.
    Ji Q; Han J; Wang L; Liu J; Dong Y; Zhu K; Shi L
    Cell Cycle; 2020 Nov; 19(21):2886-2896. PubMed ID: 33064974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α.
    Han N; Xu H; Yu N; Wu Y; Yu L
    Clin Exp Pharmacol Physiol; 2020 Jan; 47(1):85-94. PubMed ID: 31408201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-199a-3p inhibits angiogenesis by targeting the VEGF/PI3K/AKT signalling pathway in an in vitro model of diabetic retinopathy.
    Wang L; Liu WX; Huang XG
    Exp Mol Pathol; 2020 Oct; 116():104488. PubMed ID: 32622012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells.
    Wang Y; Wang L; Guo H; Peng Y; Nie D; Mo J; Ye L
    Biomed Pharmacother; 2020 Apr; 124():109699. PubMed ID: 31986419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorogenic acid attenuates diabetic retinopathy by reducing VEGF expression and inhibiting VEGF-mediated retinal neoangiogenesis.
    Mei X; Zhou L; Zhang T; Lu B; Sheng Y; Ji L
    Vascul Pharmacol; 2018 Feb; 101():29-37. PubMed ID: 29146180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA.
    Yan B; Yao J; Liu JY; Li XM; Wang XQ; Li YJ; Tao ZF; Song YC; Chen Q; Jiang Q
    Circ Res; 2015 Mar; 116(7):1143-56. PubMed ID: 25587098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.