These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1302 related articles for article (PubMed ID: 31056297)
1. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297 [TBL] [Abstract][Full Text] [Related]
2. [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro]. Yu HY; Ma DD; Wu BL Nan Fang Yi Ke Da Xue Xue Bao; 2017 May; 37(5):668-672. PubMed ID: 28539292 [TBL] [Abstract][Full Text] [Related]
3. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. Alipour M; Firouzi N; Aghazadeh Z; Samiei M; Montazersaheb S; Khoshfetrat AB; Aghazadeh M BMC Biotechnol; 2021 Jan; 21(1):6. PubMed ID: 33430842 [TBL] [Abstract][Full Text] [Related]
4. The Effects of 3-Dimensional Bioprinting Calcium Silicate Cement/Methacrylated Gelatin Scaffold on the Proliferation and Differentiation of Human Dental Pulp Stem Cells. Choi D; Qiu M; Hwang YC; Oh WM; Koh JT; Park C; Lee BN Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329621 [TBL] [Abstract][Full Text] [Related]
5. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198 [TBL] [Abstract][Full Text] [Related]
6. Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells. Niu LN; Sun JQ; Li QH; Jiao K; Shen LJ; Wu D; Tay F; Chen JH J Dent; 2014 Jul; 42(7):839-49. PubMed ID: 24705068 [TBL] [Abstract][Full Text] [Related]
7. [Osteogenic stimulation of human dental pulp stem cells with gelatin-hydroxyapatite-tricalcium phosphate scaffold]. Chang SJ; Yang L; Li R Shanghai Kou Qiang Yi Xue; 2020 Oct; 29(5):492-498. PubMed ID: 33543215 [TBL] [Abstract][Full Text] [Related]
8. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold. Gu Y; Bai Y; Zhang D J Biomed Mater Res A; 2018 Jul; 106(7):1851-1861. PubMed ID: 29520937 [TBL] [Abstract][Full Text] [Related]
9. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
10. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
11. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
12. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. Xu Y; Peng J; Richards G; Lu S; Eglin D J Orthop Translat; 2019 Jul; 18():128-141. PubMed ID: 31508316 [TBL] [Abstract][Full Text] [Related]
13. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering. Li JH; Liu DY; Zhang FM; Wang F; Zhang WK; Zhang ZT Chin Med J (Engl); 2011 Dec; 124(23):4022-8. PubMed ID: 22340336 [TBL] [Abstract][Full Text] [Related]
14. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
15. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033 [TBL] [Abstract][Full Text] [Related]