BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31056463)

  • 1. Allosteric Regulation of Oligomerization by a B
    Ruetz M; Campanello GC; McDevitt L; Yokom AL; Yadav PK; Watkins D; Rosenblatt DS; Ohi MD; Southworth DR; Banerjee R
    Cell Chem Biol; 2019 Jul; 26(7):960-969.e4. PubMed ID: 31056463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cblA-type methylmalonic aciduria.
    Plessl T; Bürer C; Lutz S; Yue WW; Baumgartner MR; Froese DS
    Hum Mutat; 2017 Aug; 38(8):988-1001. PubMed ID: 28497574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal involvement in a patient with cobalamin A type (cblA) methylmalonic aciduria: a 42-year follow-up.
    Haarmann A; Mayr M; Kölker S; Baumgartner ER; Schnierda J; Hopfer H; Devuyst O; Baumgartner MR
    Mol Genet Metab; 2013 Dec; 110(4):472-6. PubMed ID: 24095221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation.
    Froese DS; Kochan G; Muniz JR; Wu X; Gileadi C; Ugochukwu E; Krysztofinska E; Gravel RA; Oppermann U; Yue WW
    J Biol Chem; 2010 Dec; 285(49):38204-13. PubMed ID: 20876572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of interaction between the G-protein chaperone, MeaB, and B12-dependent methylmalonyl-CoA mutase.
    Padovani D; Labunska T; Banerjee R
    J Biol Chem; 2006 Jun; 281(26):17838-44. PubMed ID: 16641088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B
    Mascarenhas R; Ruetz M; Gouda H; Heitman N; Yaw M; Banerjee R
    Nat Commun; 2023 Jul; 14(1):4332. PubMed ID: 37468522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A switch III motif relays signaling between a B12 enzyme and its G-protein chaperone.
    Lofgren M; Padovani D; Koutmos M; Banerjee R
    Nat Chem Biol; 2013 Sep; 9(9):535-9. PubMed ID: 23873214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delineating the clinical spectrum of isolated methylmalonic acidurias: cblA and mut.
    Hörster F; Tuncel AT; Gleich F; Plessl T; Froese SD; Garbade SF; Kölker S; Baumgartner MR;
    J Inherit Metab Dis; 2021 Jan; 44(1):193-214. PubMed ID: 32754920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of vitamin B12 on methylmalonyl-CoA mutase activity.
    Takahashi-Iñiguez T; García-Hernandez E; Arreguín-Espinosa R; Flores ME
    J Zhejiang Univ Sci B; 2012 Jun; 13(6):423-37. PubMed ID: 22661206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoinhibition and signaling by the switch II motif in the G-protein chaperone of a radical B12 enzyme.
    Lofgren M; Koutmos M; Banerjee R
    J Biol Chem; 2013 Oct; 288(43):30980-9. PubMed ID: 23996001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of metallochaperone in complex with the cobalamin-binding domain of its target mutase provides insight into cofactor delivery.
    Vaccaro FA; Born DA; Drennan CL
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2214085120. PubMed ID: 36787360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switch I-dependent allosteric signaling in a G-protein chaperone-B
    Campanello GC; Lofgren M; Yokom AL; Southworth DR; Banerjee R
    J Biol Chem; 2017 Oct; 292(43):17617-17625. PubMed ID: 28882898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology modeling of human methylmalonyl-CoA mutase: a structural basis for point mutations causing methylmalonic aciduria.
    Thomä NH; Leadlay PF
    Protein Sci; 1996 Sep; 5(9):1922-7. PubMed ID: 8880917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria.
    Padovani D; Banerjee R
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21567-72. PubMed ID: 19955418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure and mutagenesis of the metallochaperone MeaB: insight into the causes of methylmalonic aciduria.
    Hubbard PA; Padovani D; Labunska T; Mahlstedt SA; Banerjee R; Drennan CL
    J Biol Chem; 2007 Oct; 282(43):31308-16. PubMed ID: 17728257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB).
    Hörster F; Baumgartner MR; Viardot C; Suormala T; Burgard P; Fowler B; Hoffmann GF; Garbade SF; Kölker S; Baumgartner ER
    Pediatr Res; 2007 Aug; 62(2):225-30. PubMed ID: 17597648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering of mutations in methylmalonyl CoA mutase associated with mut- methylmalonic acidemia.
    Crane AM; Ledley FD
    Am J Hum Genet; 1994 Jul; 55(1):42-50. PubMed ID: 7912889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-Linked Coordination Chemistry Directs Vitamin B
    Banerjee R; Gouda H; Pillay S
    Acc Chem Res; 2021 Apr; 54(8):2003-2013. PubMed ID: 33797888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementation studies in the cblA class of inborn error of cobalamin metabolism: evidence for interallelic complementation and for a new complementation class (cblH).
    Watkins D; Matiaszuk N; Rosenblatt DS
    J Med Genet; 2000 Jul; 37(7):510-3. PubMed ID: 10882753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inherited defects of cobalamin metabolism.
    Watkins D; Rosenblatt DS
    Vitam Horm; 2022; 119():355-376. PubMed ID: 35337626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.