These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 31056500)
21. A combination of multimodal physical exercises in real and virtual environments for individuals after chronic stroke: study protocol for a randomized controlled trial. Mazzini NA; Almeida MGR; Pompeu JE; Polese JC; Torriani-Pasin C Trials; 2019 Jul; 20(1):436. PubMed ID: 31311595 [TBL] [Abstract][Full Text] [Related]
22. Robot-based hand motor therapy after stroke. Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154 [TBL] [Abstract][Full Text] [Related]
23. Comparative Effects of Different Assistance Force During Robot-Assisted Gait Training on Locomotor Functions in Patients With Subacute Stroke: An Assessor-Blind, Randomized Controlled Trial. Park IJ; Park JH; Seong HY; You JSH; Kim SJ; Min JH; Ko HY; Shin YI Am J Phys Med Rehabil; 2019 Jan; 98(1):58-64. PubMed ID: 30142092 [TBL] [Abstract][Full Text] [Related]
24. Kinematics of reaching movements in a 2-D virtual environment in adults with and without stroke. Liebermann DG; Berman S; Weiss PL; Levin MF IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):778-87. PubMed ID: 22907972 [TBL] [Abstract][Full Text] [Related]
25. Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients. Huang X; Naghdy F; Naghdy G; Du H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():511-515. PubMed ID: 28813871 [TBL] [Abstract][Full Text] [Related]
26. Evolution of upper limb kinematics four years after subacute robot-assisted rehabilitation in stroke patients. Pila O; Duret C; Gracies JM; Francisco GE; Bayle N; Hutin É Int J Neurosci; 2018 Nov; 128(11):1030-1039. PubMed ID: 29619890 [No Abstract] [Full Text] [Related]
27. Effects of Transcranial Direct Current Stimulation (tDCS) Combined With Wrist Robot-Assisted Rehabilitation on Motor Recovery in Subacute Stroke Patients: A Randomized Controlled Trial. Mazzoleni S; Tran VD; Dario P; Posteraro F IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1458-1466. PubMed ID: 31170077 [TBL] [Abstract][Full Text] [Related]
28. Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: A pilot study. Mazzoleni S; Battini E; Crecchi R; Dario P; Posteraro F NeuroRehabilitation; 2018; 42(1):43-52. PubMed ID: 29400670 [TBL] [Abstract][Full Text] [Related]
29. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Lum PS; Burgar CG; Shor PC; Majmundar M; Van der Loos M Arch Phys Med Rehabil; 2002 Jul; 83(7):952-9. PubMed ID: 12098155 [TBL] [Abstract][Full Text] [Related]
30. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Chang JJ; Tung WL; Wu WL; Huang MH; Su FC Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578 [TBL] [Abstract][Full Text] [Related]
31. Psychophysiological responses to robot training in different recovery phases after stroke. Goljar N; Javh M; Poje J; Ocepek J; Novak D; Ziherl J; Olenšek A; Mihelj M; Munih M IEEE Int Conf Rehabil Robot; 2011; 2011():5975498. PubMed ID: 22457908 [TBL] [Abstract][Full Text] [Related]
32. Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke. Roy A; Forrester LW; Macko RF J Rehabil Res Dev; 2011; 48(4):417-29. PubMed ID: 21674391 [TBL] [Abstract][Full Text] [Related]
33. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Mazzoleni S; Sale P; Tiboni M; Franceschini M; Carrozza MC; Posteraro F Am J Phys Med Rehabil; 2013 Oct; 92(10 Suppl 2):e26-37. PubMed ID: 24052027 [TBL] [Abstract][Full Text] [Related]
34. Cognitive-Motor Interference on Upper Extremity Motor Performance in a Robot-Assisted Planar Reaching Task Among Patients With Stroke. Shin JH; Park G; Cho DY Arch Phys Med Rehabil; 2017 Apr; 98(4):730-737. PubMed ID: 28049003 [TBL] [Abstract][Full Text] [Related]
35. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke. Vahdat S; Darainy M; Thiel A; Ostry DJ Neurorehabil Neural Repair; 2019 Jan; 33(1):70-81. PubMed ID: 30595082 [TBL] [Abstract][Full Text] [Related]
36. A robot-based behavioural task to quantify impairments in rapid motor decisions and actions after stroke. Bourke TC; Lowrey CR; Dukelow SP; Bagg SD; Norman KE; Scott SH J Neuroeng Rehabil; 2016 Oct; 13(1):91. PubMed ID: 27724945 [TBL] [Abstract][Full Text] [Related]
37. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects. Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110 [TBL] [Abstract][Full Text] [Related]
38. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke. Levin MF; Magdalon EC; Michaelsen SM; Quevedo AA IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1047-55. PubMed ID: 25594971 [TBL] [Abstract][Full Text] [Related]
39. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects. Knaut LA; Subramanian SK; McFadyen BJ; Bourbonnais D; Levin MF Arch Phys Med Rehabil; 2009 May; 90(5):793-802. PubMed ID: 19406299 [TBL] [Abstract][Full Text] [Related]
40. Kinematic measures for upper limb motor assessment during robot-mediated training in patients with severe sub-acute stroke. Duret C; Courtial O; Grosmaire AG Restor Neurol Neurosci; 2016; 34(2):237-45. PubMed ID: 26890098 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]