These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31056506)
1. Approaching the One-Sided Exemplar Adjacency Number Problem. Qingge L; Smith K; Jungst S; Wang B; Yang Q; Zhu B IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1946-1954. PubMed ID: 31056506 [TBL] [Abstract][Full Text] [Related]
2. A Fast and Exact Algorithm for the Exemplar Breakpoint Distance. Shao M; Moret BM J Comput Biol; 2016 May; 23(5):337-46. PubMed ID: 26953781 [TBL] [Abstract][Full Text] [Related]
3. The zero exemplar distance problem. Jiang M J Comput Biol; 2011 Sep; 18(9):1077-86. PubMed ID: 21899417 [TBL] [Abstract][Full Text] [Related]
4. Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes. Angibaud S; Fertin G; Rusu I; Thévenin A; Vialette S J Comput Biol; 2008 Oct; 15(8):1093-115. PubMed ID: 18774903 [TBL] [Abstract][Full Text] [Related]
5. An Integer Linear Programming Approach for Scaffolding Based on Exemplar Breakpoint Distance. Shieh YK; Peng DY; Chen YH; Wu TW; Lu CL J Comput Biol; 2022 Sep; 29(9):961-973. PubMed ID: 35638936 [TBL] [Abstract][Full Text] [Related]
6. A Dynamic Programming Algorithm For (1,2)-Exemplar Breakpoint Distance. Wei Z; Zhu D; Wang L J Comput Biol; 2015 Jul; 22(7):666-76. PubMed ID: 26161597 [TBL] [Abstract][Full Text] [Related]
7. Algorithms for sorting unsigned linear genomes by the DCJ operations. Jiang H; Zhu B; Zhu D Bioinformatics; 2011 Feb; 27(3):311-6. PubMed ID: 21134895 [TBL] [Abstract][Full Text] [Related]
8. Comparing genomes with duplications: a computational complexity point of view. Blin G; Chauve C; Fertin G; Rizzi R; Vialette S IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):523-34. PubMed ID: 17975264 [TBL] [Abstract][Full Text] [Related]
9. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes. Shao M; Lin Y; Moret BM J Comput Biol; 2015 May; 22(5):425-35. PubMed ID: 25517208 [TBL] [Abstract][Full Text] [Related]
10. An improved approximation algorithm for scaffold filling to maximize the common adjacencies. Liu N; Jiang H; Zhu D; Zhu B IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):905-13. PubMed ID: 24334385 [TBL] [Abstract][Full Text] [Related]
11. Inapproximability of (1,2)-exemplar distance. Bulteau L; Jiang M IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1384-90. PubMed ID: 24407297 [TBL] [Abstract][Full Text] [Related]
12. An ILP solution for the gene duplication problem. Chang WC; Burleigh GJ; Fernández-Baca DF; Eulenstein O BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S14. PubMed ID: 21342543 [TBL] [Abstract][Full Text] [Related]
13. On Computing Breakpoint Distances for Genomes with Duplicate Genes. Shao M; Moret BME J Comput Biol; 2017 Jun; 24(6):571-580. PubMed ID: 27788022 [TBL] [Abstract][Full Text] [Related]
14. A pseudo-boolean framework for computing rearrangement distances between genomes with duplicates. Angibaud S; Fertin G; Rusu I; Vialette S J Comput Biol; 2007 May; 14(4):379-93. PubMed ID: 17572018 [TBL] [Abstract][Full Text] [Related]
16. Scaffold filling under the breakpoint and related distances. Jiang H; Zheng C; Sankoff D; Zhu B IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1220-9. PubMed ID: 22529329 [TBL] [Abstract][Full Text] [Related]
17. An exact algorithm for the zero exemplar breakpoint distance problem. Zhu D; Wang L IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1469-77. PubMed ID: 24407305 [TBL] [Abstract][Full Text] [Related]