These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31056515)

  • 1. Algorithms for the Sequential Reprogramming of Boolean Networks.
    Mandon H; Su C; Pang J; Paul S; Haar S; Pauleve L
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1610-1619. PubMed ID: 31056515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CABEAN: a software for the control of asynchronous Boolean networks.
    Su C; Pang J
    Bioinformatics; 2021 May; 37(6):879-881. PubMed ID: 32845335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Reachability of Boolean Control Networks.
    Li F; Tang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):740-745. PubMed ID: 28113910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges.
    Gam R; Sung M; Prasad Pandurangan A
    Cells; 2019 Oct; 8(10):. PubMed ID: 31581647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target Control of Asynchronous Boolean Networks.
    Su C; Pang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):707-719. PubMed ID: 34882560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P_UNSAT approach of attractor calculation for Boolean gene regulatory networks.
    He Q; Xia Z; Lin B
    J Theor Biol; 2018 Jun; 447():171-177. PubMed ID: 29605228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Cellular Differentiation and Reprogramming with Gene Regulatory Networks.
    Hartmann A; Ravichandran S; Del Sol A
    Methods Mol Biol; 2019; 1975():37-51. PubMed ID: 31062304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks.
    Crespo I; Perumal TM; Jurkowski W; del Sol A
    BMC Syst Biol; 2013 Dec; 7():140. PubMed ID: 24350678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Approach Towards the Source-Target Control of Boolean Networks.
    Paul S; Su C; Pang J; Mizera A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1932-1945. PubMed ID: 31095489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the robustness of update schedules in Boolean networks.
    Aracena J; Goles E; Moreira A; Salinas L
    Biosystems; 2009 Jul; 97(1):1-8. PubMed ID: 19505631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal Reasoning on Boolean Control Networks Based on Abduction: Theory and Application to Cancer Drug Discovery.
    Biane C; Delaplace F
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1574-1585. PubMed ID: 30582550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
    Xie M; Tang S; Li K; Ding S
    Acc Chem Res; 2017 May; 50(5):1202-1211. PubMed ID: 28453285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian Networks Predict Neuronal Transdifferentiation.
    Ainsworth RI; Ai R; Ding B; Li N; Zhang K; Wang W
    G3 (Bethesda); 2018 Jul; 8(7):2501-2511. PubMed ID: 29848620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SAT-based algorithm for finding attractors in synchronous Boolean networks.
    Dubrova E; Teslenko M
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1393-9. PubMed ID: 21778527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simpler twist of fate.
    Eisenstein M
    Nature; 2016 Jun; 534(7607):421-3. PubMed ID: 27306187
    [No Abstract]   [Full Text] [Related]  

  • 16. Taming Asynchrony for Attractor Detection in Large Boolean Networks.
    Mizera A; Pang J; Qu H; Yuan Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):31-42. PubMed ID: 29994682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MiR-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyte-Like Fate by Directly Repressing Specificity Protein 1.
    Singh VP; Mathison M; Patel V; Sanagasetti D; Gibson BW; Yang J; Rosengart TK
    J Am Heart Assoc; 2016 Nov; 5(11):. PubMed ID: 27930352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.
    Ebrahimi B
    Differentiation; 2016; 92(1-2):35-40. PubMed ID: 27056282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DReSS: a method to quantitatively describe the influence of structural perturbations on state spaces of genetic regulatory networks.
    Yin Z; Guo B; Ma S; Sun Y; Mi Z; Zheng Z
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences.
    Cieślar-Pobuda A; Knoflach V; Ringh MV; Stark J; Likus W; Siemianowicz K; Ghavami S; Hudecki A; Green JL; Łos MJ
    Biochim Biophys Acta Mol Cell Res; 2017 Jul; 1864(7):1359-1369. PubMed ID: 28460880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.