These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31056666)
1. Development of Industrial Oil Crop Crambe abyssinica for Wax Ester Production through Metabolic Engineering and Cross Breeding. Li X; Guan R; Fan J; Zhu LH Plant Cell Physiol; 2019 Jun; 60(6):1274-1283. PubMed ID: 31056666 [TBL] [Abstract][Full Text] [Related]
2. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil. Li X; Mei D; Liu Q; Fan J; Singh S; Green A; Zhou XR; Zhu LH Plant Biotechnol J; 2016 Jan; 14(1):323-31. PubMed ID: 25998013 [TBL] [Abstract][Full Text] [Related]
3. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Li X; van Loo EN; Gruber J; Fan J; Guan R; Frentzen M; Stymne S; Zhu LH Plant Biotechnol J; 2012 Sep; 10(7):862-70. PubMed ID: 22642539 [TBL] [Abstract][Full Text] [Related]
4. Detection of induced mutations in CaFAD2 genes by next-generation sequencing leading to the production of improved oil composition in Crambe abyssinica. Cheng J; Salentijn EM; Huang B; Denneboom C; Qi W; Dechesne AC; Krens FA; Visser RG; van Loo EN Plant Biotechnol J; 2015 May; 13(4):471-81. PubMed ID: 25393152 [TBL] [Abstract][Full Text] [Related]
5. Enhancing Erucic Acid and Wax Ester Production in Tesfaye M; Wang ES; Feyissa T; Herrfurth C; Haileselassie T; Kanagarajan S; Feussner I; Zhu LH Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928029 [TBL] [Abstract][Full Text] [Related]
7. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production. Zhu LH; Krens F; Smith MA; Li X; Qi W; van Loo EN; Iven T; Feussner I; Nazarenus TJ; Huai D; Taylor DC; Zhou XR; Green AG; Shockey J; Klasson KT; Mullen RT; Huang B; Dyer JM; Cahoon EB Sci Rep; 2016 Feb; 6():22181. PubMed ID: 26916792 [TBL] [Abstract][Full Text] [Related]
8. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil. Guan R; Li X; Hofvander P; Zhou XR; Wang D; Stymne S; Zhu LH Lipids; 2015 Apr; 50(4):407-16. PubMed ID: 25753896 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of the omega-6 fatty acid desaturase (CaFAD2) gene family of the oil seed crop Crambe abyssinica. Cheng J; Zhu LH; Salentijn EM; Huang B; Gruber J; Dechesne AC; Krens FA; Qi W; Visser RG; van Loo EN BMC Plant Biol; 2013 Oct; 13():146. PubMed ID: 24083776 [TBL] [Abstract][Full Text] [Related]
10. Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis. Wenning L; Ejsing CS; David F; Sprenger RR; Nielsen J; Siewers V Microb Cell Fact; 2019 Mar; 18(1):49. PubMed ID: 30857535 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Iven T; Hornung E; Heilmann M; Feussner I Plant Biotechnol J; 2016 Jan; 14(1):252-9. PubMed ID: 25912558 [TBL] [Abstract][Full Text] [Related]
12. Tailoring the composition of novel wax esters in the seeds of transgenic Camelina sativa through systematic metabolic engineering. Ruiz-Lopez N; Broughton R; Usher S; Salas JJ; Haslam RP; Napier JA; Beaudoin F Plant Biotechnol J; 2017 Jul; 15(7):837-849. PubMed ID: 27990737 [TBL] [Abstract][Full Text] [Related]
13. Regeneration and transformation of Crambe abyssinica. Qi W; Tinnenbroek-Capel IE; Schaart JG; Huang B; Cheng J; Visser RG; Van Loo EN; Krens FA BMC Plant Biol; 2014 Sep; 14():235. PubMed ID: 25195944 [TBL] [Abstract][Full Text] [Related]
14. High-yield preparation of wax esters via lipase-catalyzed esterification using fatty acids and alcohols from crambe and camelina oils. Steinke G; Weitkamp P; Klein E; Mukherjee KD J Agric Food Chem; 2001 Feb; 49(2):647-51. PubMed ID: 11262006 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of fatty alcohol production in transgenic hairy roots of Crambe abyssinica. Miklaszewska M; Banaś A; Królicka A Biotechnol Bioeng; 2017 Jun; 114(6):1275-1282. PubMed ID: 27943249 [TBL] [Abstract][Full Text] [Related]
16. High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. Qi W; Lin F; Liu Y; Huang B; Cheng J; Zhang W; Zhao H BMC Plant Biol; 2016 Jun; 16(1):139. PubMed ID: 27317011 [TBL] [Abstract][Full Text] [Related]
17. The production of wax esters in transgenic plants: towards a sustainable source of bio-lubricants. Domergue F; Miklaszewska M J Exp Bot; 2022 May; 73(9):2817-2834. PubMed ID: 35560197 [TBL] [Abstract][Full Text] [Related]
18. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae. Wenning L; Yu T; David F; Nielsen J; Siewers V Biotechnol Bioeng; 2017 May; 114(5):1025-1035. PubMed ID: 27858995 [TBL] [Abstract][Full Text] [Related]
19. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production. Lee KR; Chen GQ; Kim HU Plant Cell Rep; 2015 Apr; 34(4):603-15. PubMed ID: 25577331 [TBL] [Abstract][Full Text] [Related]
20. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Bansal S; Durrett TP Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]