BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31057183)

  • 1. All-optical crosstalk-free manipulation and readout of Chronos-expressing neurons.
    Soor NS; Quicke P; Howe CL; Pang KT; Neil MAA; Schultz SR; Foust AJ
    J Phys D Appl Phys; 2019 Mar; 52(10):104002. PubMed ID: 31057183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
    Ronzitti E; Conti R; Zampini V; Tanese D; Foust AJ; Klapoetke N; Boyden ES; Papagiakoumou E; Emiliani V
    J Neurosci; 2017 Nov; 37(44):10679-10689. PubMed ID: 28972125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution.
    Bansal H; Gupta N; Roy S
    Neuroscience; 2020 Nov; 449():165-188. PubMed ID: 32941934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo.
    Packer AM; Russell LE; Dalgleish HW; Häusser M
    Nat Methods; 2015 Feb; 12(2):140-6. PubMed ID: 25532138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Optical Interrogation of Neural Circuits.
    Emiliani V; Cohen AE; Deisseroth K; Häusser M
    J Neurosci; 2015 Oct; 35(41):13917-26. PubMed ID: 26468193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins.
    Forli A; Pisoni M; Printz Y; Yizhar O; Fellin T
    Elife; 2021 May; 10():. PubMed ID: 34032211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.
    Zolnik TA; Sha F; Johenning FW; Schreiter ER; Looger LL; Larkum ME; Sachdev RN
    J Physiol; 2017 Mar; 595(5):1465-1477. PubMed ID: 27861906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances and current limitations of available technology to optically manipulate and observe cardiac electrophysiology.
    Marchal GA; Biasci V; Yan P; Palandri C; Campione M; Cerbai E; Loew LM; Sacconi L
    Pflugers Arch; 2023 Nov; 475(11):1357-1366. PubMed ID: 37770585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.
    Brinks D; Adam Y; Kheifets S; Cohen AE
    Acc Chem Res; 2016 Nov; 49(11):2518-2526. PubMed ID: 27786461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering rhodopsins' activation spectra using a FRET-based approach.
    Beck C; Gong Y
    Biophys J; 2022 May; 121(9):1765-1776. PubMed ID: 35331688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging GFP-based reporters in neurons with multiwavelength optogenetic control.
    Venkatachalam V; Cohen AE
    Biophys J; 2014 Oct; 107(7):1554-63. PubMed ID: 25296307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.
    Schmid F; Wachsmuth L; Schwalm M; Prouvot PH; Jubal ER; Fois C; Pramanik G; Zimmer C; Faber C; Stroh A
    J Cereb Blood Flow Metab; 2016 Nov; 36(11):1885-1900. PubMed ID: 26661247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared and far-red genetically encoded indicators of neuronal activity.
    Shcherbakova DM
    J Neurosci Methods; 2021 Oct; 362():109314. PubMed ID: 34375713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening and Cellular Characterization of Genetically Encoded Voltage Indicators Based on Near-Infrared Fluorescent Proteins.
    Monakhov MV; Matlashov ME; Colavita M; Song C; Shcherbakova DM; Antic SD; Verkhusha VV; Knöpfel T
    ACS Chem Neurosci; 2020 Nov; 11(21):3523-3531. PubMed ID: 33063984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic-optimized CoChR variant with enhanced high-frequency spiking fidelity.
    Bi X; Beck C; Gong Y
    Biophys J; 2022 Nov; 121(21):4166-4178. PubMed ID: 36151721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator.
    Tischbirek C; Birkner A; Jia H; Sakmann B; Konnerth A
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11377-82. PubMed ID: 26305966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons.
    Saran S; Gupta N; Roy S
    Neurophotonics; 2018 Apr; 5(2):025009. PubMed ID: 29845088
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.