BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31057199)

  • 1. Volume-of-interest Imaging Using Multiple Aperture Devices.
    Wang W; Gang GJ; Siewerdsen JH; Stayman JW
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10948():. PubMed ID: 31057199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume-of-interest imaging with dynamic fluence modulation using multiple aperture devices.
    Wang W; Gang GJ; Siewerdsen JH; Levinson R; Kawamoto S; Stayman JW
    J Med Imaging (Bellingham); 2019 Jul; 6(3):033504. PubMed ID: 31528659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume-of-interest CT imaging with dynamic beam filtering using multiple aperture devices.
    Wang W; Gang GJ; Mao A; Sisniega A; Siewerdsen JH; Stayman JW
    Conf Proc Int Conf Image Form Xray Comput Tomogr; 2018 May; 2018():213-217. PubMed ID: 30556060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realization of fluence field modulated CT on a clinical TomoTherapy megavoltage CT system.
    Szczykutowicz TP; Hermus J; Geurts M; Smilowitz J
    Phys Med Biol; 2015 Sep; 60(18):7245-57. PubMed ID: 26348406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evaluation of dual Multiple Aperture Devices for Fluence Field Modulated X-Ray Computed Tomography.
    Mathews AJ; Gang G; Levinson R; Zbijewski W; Kawamoto S; Siewerdsen JH; Stayman JW
    Proc SPIE Int Soc Opt Eng; 2017 Feb; 10132():. PubMed ID: 28603335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of dual multiple aperture devices for dynamical fluence field modulated CT.
    Mathews AJ; Tilley S; Gang G; Kawamoto S; Zbijewski W; Siewerdsen JH; Levinson R; Webster Stayman J
    Conf Proc Int Conf Image Form Xray Comput Tomogr; 2016 Jul; 2016():29-32. PubMed ID: 28361128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic fluence field modulation for miscentered patients in computed tomography.
    Mao A; Gang GJ; Shyr W; Levinson R; Siewerdsen JH; Kawamoto S; Webster Stayman J
    J Med Imaging (Bellingham); 2018 Oct; 5(4):043501. PubMed ID: 30397631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluence-Field Modulated X-ray CT using Multiple Aperture Devices.
    Stayman JW; Mathews A; Zbijewski W; Gang G; Siewerdsen J; Kawamoto S; Blevis I; Levinson R
    Proc SPIE Int Soc Opt Eng; 2016 Feb; 9783():. PubMed ID: 27110052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation and Assessment of Dynamic Fluence Field Modulation with Multiple Aperture Devices.
    Gang GJ; Mao A; Siewerdsen JH; Stayman JW
    Conf Proc Int Conf Image Form Xray Comput Tomogr; 2018 May; 2018():47-51. PubMed ID: 30506056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume-of-interest cone-beam CT using a 2.35 MV beam generated with a carbon target.
    Robar JL; Parsons D; Berman A; Macdonald A
    Med Phys; 2012 Jul; 39(7):4209-18. PubMed ID: 22830754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution dual detector volume-of-interest cone beam breast CT--Demonstration with a bench top system.
    Shen Y; Yi Y; Zhong Y; Lai CJ; Liu X; You Z; Ge S; Wang T; Shaw CC
    Med Phys; 2011 Dec; 38(12):6429-42. PubMed ID: 22149826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of three-dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning.
    Montoya JC; Zhang C; Li Y; Li K; Chen GH
    Med Phys; 2022 Feb; 49(2):901-916. PubMed ID: 34908175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of kV CBCT image quality and dose reduction for volume-of-interest imaging using dynamic collimation.
    Parsons D; Robar JL
    Med Phys; 2015 Sep; 42(9):5258-69. PubMed ID: 26328975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume-of-interest (VOI) imaging in C-arm flat-detector CT for high image quality at reduced dose.
    Kolditz D; Kyriakou Y; Kalender WA
    Med Phys; 2010 Jun; 37(6):2719-30. PubMed ID: 20632582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation doses in volume-of-interest breast computed tomography--A Monte Carlo simulation study.
    Lai CJ; Zhong Y; Yi Y; Wang T; Shaw CC
    Med Phys; 2015 Jun; 42(6):3063-75. PubMed ID: 26127058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic beam filtering for miscentered patients.
    Mao A; Shyr W; Gang GJ; Stayman JW
    Proc SPIE Int Soc Opt Eng; 2018 Feb; 10573():. PubMed ID: 29622854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-bounded extrapolation using low-dose priors for volume-of-interest imaging in C-arm CT.
    Xia Y; Bauer S; Maier A; Berger M; Hornegger J
    Med Phys; 2015 Apr; 42(4):1787-96. PubMed ID: 25832069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimization algorithm for dose reduction with fluence-modulated proton CT.
    Dickmann J; Rit S; Pankuch M; Johnson RP; Schulte RW; Parodi K; Dedes G; Landry G
    Med Phys; 2020 Apr; 47(4):1895-1906. PubMed ID: 32040212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative volume of interest based 4D cone-beam CT.
    Martin R; Ahmad M; Hugo G; Pan T
    Med Phys; 2017 Dec; 44(12):6515-6528. PubMed ID: 28898423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization for customized trajectories in cone beam computed tomography.
    Hatamikia S; Biguri A; Kronreif G; Kettenbach J; Russ T; Furtado H; Shiyam Sundar LK; Buschmann M; Unger E; Figl M; Georg D; Birkfellner W
    Med Phys; 2020 Oct; 47(10):4786-4799. PubMed ID: 32679623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.