These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31057348)

  • 21. Nuisance effects and the limitations of nuisance regression in dynamic functional connectivity fMRI.
    Nalci A; Rao BD; Liu TT
    Neuroimage; 2019 Jan; 184():1005-1031. PubMed ID: 30223062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
    Mowinckel AM; Espeseth T; Westlye LT
    Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points.
    Siegel JS; Power JD; Dubis JW; Vogel AC; Church JA; Schlaggar BL; Petersen SE
    Hum Brain Mapp; 2014 May; 35(5):1981-96. PubMed ID: 23861343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise.
    Harita S; Stroman PW
    Magn Reson Med; 2017 Dec; 78(6):2149-2156. PubMed ID: 28074492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
    Lin Z; Gong T; Wang K; Li Z; He H; Tong Q; Yu F; Zhong J
    Med Phys; 2019 Jul; 46(7):3101-3116. PubMed ID: 31009085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
    Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM
    Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Convolutional Recurrent Neural Network for Individual Recognition Based on Resting State fMRI Data.
    Wang L; Li K; Chen X; Hu XP
    Front Neurosci; 2019; 13():434. PubMed ID: 31118882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of peripheral near-infrared spectroscopy low-frequency oscillations to other denoising methods in resting state functional MRI with ultrahigh temporal resolution.
    Hocke LM; Tong Y; Lindsey KP; de B Frederick B
    Magn Reson Med; 2016 Dec; 76(6):1697-1707. PubMed ID: 26854203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Task-based functional MRI challenges in clinical neuroscience: Choice of the best head motion correction approach in multiple sclerosis.
    Soares JF; Abreu R; Lima AC; Sousa L; Batista S; Castelo-Branco M; Duarte JV
    Front Neurosci; 2022; 16():1017211. PubMed ID: 36570849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does motion-related brain functional connectivity reflect both artifacts and genuine neural activity?
    Pujol J; Macià D; Blanco-Hinojo L; Martínez-Vilavella G; Sunyer J; de la Torre R; Caixàs A; Martín-Santos R; Deus J; Harrison BJ
    Neuroimage; 2014 Nov; 101():87-95. PubMed ID: 24999036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resting state fMRI data from subjects scanned with the EPI-PACE (Echoplanar Imaging - Prospective Acquisition CorrEction) sequence.
    Lanka P; Deshpande G
    Data Brief; 2018 Oct; 20():2072-2075. PubMed ID: 30345338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement.
    Fellner MC; Volberg G; Mullinger KJ; Goldhacker M; Wimber M; Greenlee MW; Hanslmayr S
    Neuroimage; 2016 Jun; 133():354-366. PubMed ID: 27012498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust spinal cord resting-state fMRI using independent component analysis-based nuisance regression noise reduction.
    Hu Y; Jin R; Li G; Luk KD; Wu EX
    J Magn Reson Imaging; 2018 Nov; 48(5):1421-1431. PubMed ID: 29659087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved motion correction for functional MRI using an omnibus regression model.
    Raval V; Nguyen KP; Mellema C; Montillo A
    Proc IEEE Int Symp Biomed Imaging; 2020 Apr; 2020():1044-1047. PubMed ID: 33767806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions.
    Dipasquale O; Sethi A; Laganà MM; Baglio F; Baselli G; Kundu P; Harrison NA; Cercignani M
    PLoS One; 2017; 12(3):e0173289. PubMed ID: 28323821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motion Artifact Reduction Using a Convolutional Neural Network for Dynamic Contrast Enhanced MR Imaging of the Liver.
    Tamada D; Kromrey ML; Ichikawa S; Onishi H; Motosugi U
    Magn Reson Med Sci; 2020 Feb; 19(1):64-76. PubMed ID: 31061259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional connectivity in the rat at 11.7T: Impact of physiological noise in resting state fMRI.
    Kalthoff D; Seehafer JU; Po C; Wiedermann D; Hoehn M
    Neuroimage; 2011 Feb; 54(4):2828-39. PubMed ID: 20974263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resting State fMRI: Going Through the Motions.
    Maknojia S; Churchill NW; Schweizer TA; Graham SJ
    Front Neurosci; 2019; 13():825. PubMed ID: 31456656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.