These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 31057716)
1. CRISPR/Cas9 System for Efficient Genome Editing and Targeting in the Mouse NIH/3T3 Cells. Mehravar M; Shirazi A; Mehrazar MM; Nazari M; Banan M Avicenna J Med Biotechnol; 2019; 11(2):149-155. PubMed ID: 31057716 [TBL] [Abstract][Full Text] [Related]
2. Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9. Mehravar M; Shirazi A; Mehrazar MM; Nazari M; Banan M; Salimi M Iran J Biotechnol; 2019 Jan; 17(1):e2205. PubMed ID: 31457047 [TBL] [Abstract][Full Text] [Related]
3. Optimized CRISPR/Cas9 system for gene knockout in chicken DF1 cells. Zou K; Wang F; Zhang Z; Zhou Y; Li P; Wang D; Zhu M; Jia C; Wei Z Poult Sci; 2023 Oct; 102(10):102970. PubMed ID: 37562129 [TBL] [Abstract][Full Text] [Related]
4. Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9. Byambaa S; Uosaki H; Hara H; Nagao Y; Abe T; Shibata H; Nureki O; Ohmori T; Hanazono Y Exp Anim; 2020 Apr; 69(2):189-198. PubMed ID: 31801915 [TBL] [Abstract][Full Text] [Related]
5. Rapid generation of novel models of RAG1 deficiency by CRISPR/Cas9-induced mutagenesis in murine zygotes. Ott de Bruin L; Yang W; Capuder K; Lee YN; Antolini M; Meyers R; Gellert M; Musunuru K; Manis J; Notarangelo L Oncotarget; 2016 Mar; 7(11):12962-74. PubMed ID: 26887046 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of Latent HIV-1 Proviral DNA Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Treatment and the Assessment of Off-Target Effects. Xu Y; Peng X; Zheng Y; Jin C; Lu X; Han D; Fu H; Chen C; Wu N Front Microbiol; 2021; 12():629153. PubMed ID: 34122355 [TBL] [Abstract][Full Text] [Related]
7. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model. Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595 [TBL] [Abstract][Full Text] [Related]
8. RNA-guided genome editing for target gene mutations in wheat. Upadhyay SK; Kumar J; Alok A; Tuli R G3 (Bethesda); 2013 Dec; 3(12):2233-8. PubMed ID: 24122057 [TBL] [Abstract][Full Text] [Related]
9. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352 [TBL] [Abstract][Full Text] [Related]
10. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system. Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences. Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360 [TBL] [Abstract][Full Text] [Related]
12. Biological Characteristics of Severe Combined Immunodeficient Mice Produced by CRISPR/Cas9-Mediated Zhao Y; Liu P; Xin Z; Shi C; Bai Y; Sun X; Zhao Y; Wang X; Liu L; Zhao X; Chen Z; Zhang H Front Genet; 2019; 10():401. PubMed ID: 31134127 [TBL] [Abstract][Full Text] [Related]
13. RNA-guided genome editing in plants using a CRISPR-Cas system. Xie K; Yang Y Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122 [TBL] [Abstract][Full Text] [Related]
14. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Wang S; Dong S; Wang P; Tao Y; Wang Y Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147 [No Abstract] [Full Text] [Related]
15. CRISPR/Cas9-mediated genome editing of splicing mutation causing congenital hearing loss. Ryu N; Kim MA; Choi DG; Kim YR; Sonn JK; Lee KY; Kim UK Gene; 2019 Jun; 703():83-90. PubMed ID: 30898719 [TBL] [Abstract][Full Text] [Related]
16. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Yan Q; Zhang Q; Yang H; Zou Q; Tang C; Fan N; Lai L Cell Regen; 2014; 3(1):12. PubMed ID: 25408890 [TBL] [Abstract][Full Text] [Related]
17. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line. Arbabi Zaboli K; Rahimi H; Thekkiniath J; Taromchi AH; Kaboli S Folia Histochem Cytobiol; 2022; 60(1):13-23. PubMed ID: 35157300 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Genome Editing Tools For Multi-Gene Deletion Knock-Out Approaches Using Paired CRISPR sgRNAs in CHO Cells. Schmieder V; Bydlinski N; Strasser R; Baumann M; Kildegaard HF; Jadhav V; Borth N Biotechnol J; 2018 Mar; 13(3):e1700211. PubMed ID: 28976642 [TBL] [Abstract][Full Text] [Related]
19. Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing. Su L; Shi C; Huang X; Wang Y; Li G Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33167309 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots. Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]