These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31057826)

  • 1. Graphene-aluminum nitride NEMS resonant infrared detector.
    Qian Z; Hui Y; Liu F; Kang S; Kar S; Rinaldi M
    Microsyst Nanoeng; 2016; 2():16026. PubMed ID: 31057826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems.
    Qian Z; Liu F; Hui Y; Kar S; Rinaldi M
    Nano Lett; 2015 Jul; 15(7):4599-604. PubMed ID: 26029960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing.
    Hui Y; Gomez-Diaz JS; Qian Z; Alù A; Rinaldi M
    Nat Commun; 2016 Apr; 7():11249. PubMed ID: 27080018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technique and Circuit for Contactless Readout of Piezoelectric MEMS Resonator Sensors.
    Baù M; Ferrari M; Begum H; Ali A; Lee JE; Ferrari V
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion.
    Zheng XQ; Lee J; Feng PX
    Microsyst Nanoeng; 2017; 3():17038. PubMed ID: 31057874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive Wafer Level MEMS Piezoelectric Device Thickness Detection.
    Zhou Y; Gu Y; Zhang S
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric Field Stiffening Effect in c-Oriented Aluminum Nitride Piezoelectric Thin Films.
    Chen C; Shang Z; Gong J; Zhang F; Zhou H; Tang B; Xu Y; Zhang C; Yang Y; Mu X
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1819-1827. PubMed ID: 29260854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrothermally Tunable Graphene Resonators Operating at Very High Temperature up to 1200 K.
    Ye F; Lee J; Feng PX
    Nano Lett; 2018 Mar; 18(3):1678-1685. PubMed ID: 29385804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study on the Effects of Bottom Electrode Designs on Aluminum Nitride Contour-Mode Resonators.
    Jung SI; Ryu C; Piazza G; Kim HJ
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31703310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators.
    Knapp M; Hoffmann R; Lebedev V; Cimalla V; Ambacher O
    Nanotechnology; 2018 Mar; 29(10):105302. PubMed ID: 29320371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators.
    Singh V; Sengupta S; Solanki HS; Dhall R; Allain A; Dhara S; Pant P; Deshmukh MM
    Nanotechnology; 2010 Apr; 21(16):165204. PubMed ID: 20351404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin Piezoelectric Resonators Based on Graphene and Free-Standing Single-Crystal BaTiO
    Lee M; Renshof JR; van Zeggeren KJ; Houmes MJA; Lesne E; Šiškins M; van Thiel TC; Guis RH; van Blankenstein MR; Verbiest GJ; Caviglia AD; van der Zant HSJ; Steeneken PG
    Adv Mater; 2022 Nov; 34(44):e2204630. PubMed ID: 36039705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of high frequency piezoelectric resonators utilizing laterally propagating fast modes in thin aluminum nitride (AlN) films.
    Yantchev V; Enlund J; Biurström J; Katardjiev I
    Ultrasonics; 2006 Dec; 45(1-4):208-12. PubMed ID: 17097706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a High-Density Piezoelectric Micromachined Ultrasonic Transducer Array Based on Patterned Aluminum Nitride Thin Film.
    Shin E; Yeo HG; Yeon A; Jin C; Park W; Lee SC; Choi H
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32604827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A MEMS Fabrication Process with Thermal-Oxide Releasing Barriers and Polysilicon Sacrificial Layers for AlN Lamb-Wave Resonators to Achieve
    Zhao J; Zhu Z; Sun H; Lv S; Wang X; Song C
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Conductivity of Aluminum Scandium Nitride for 5G Mobile Applications and Beyond.
    Song Y; Perez C; Esteves G; Lundh JS; Saltonstall CB; Beechem TE; Yang JI; Ferri K; Brown JE; Tang Z; Maria JP; Snyder DW; Olsson RH; Griffin BA; Trolier-McKinstry SE; Foley BM; Choi S
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19031-19041. PubMed ID: 33851815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride.
    Knapp M; Hoffmann R; Cimalla V; Ambacher O
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28820462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dot emission modulation using piezoelectric photonic crystal MEMS resonators.
    See GG; Gao A; Xu L; Nuzzo R; Gong S; Cunningham BT
    Opt Express; 2017 Oct; 25(21):25831-25841. PubMed ID: 29041246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Array of Resonant Electromechanical Nanosystems: A Technological Breakthrough for Uncooled Infrared Imaging.
    Duraffourg L; Laurent L; Moulet JS; Arcamone J; Yon JJ
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MEMS-Based Quad-Wavelength Hybrid Plasmonic-Pyroelectric Infrared Detector.
    Doan AT; Yokoyama T; Dao TD; Ishii S; Ohi A; Nabatame T; Wada Y; Maruyama S; Nagao T
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.