These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31057830)

  • 1. Wireless actuation of micromechanical resonators.
    Mateen F; Maedler C; Erramilli S; Mohanty P
    Microsyst Nanoeng; 2016; 2():16036. PubMed ID: 31057830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical wireless information transfer with nonlinear micromechanical resonators.
    Boales JA; Mateen F; Mohanty P
    Microsyst Nanoeng; 2017; 3():17026. PubMed ID: 31057867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Battery-Less Wireless Respiratory Sensor Using Micro-Machined Thin-Film Piezoelectric Resonators.
    Moradian S; Akhkandi P; Huang J; Gong X; Abdolvand R
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33801761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit.
    Assawaworrarit S; Yu X; Fan S
    Nature; 2017 Jun; 546(7658):387-390. PubMed ID: 28617463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency Stabilization of Nanomechanical Resonators Using Thermally Invariant Strain Engineering.
    Wang M; Zhang R; Ilic R; Aksyuk V; Liu Y
    Nano Lett; 2020 May; 20(5):3050-3057. PubMed ID: 32250636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices.
    Dinis H; Colmiais I; Mendes PM
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconfigurable Split Ring Resonators by MEMS-Driven Geometrical Tuning.
    Leo A; Bramanti AP; Giusti D; Quaglia F; Maruccio G
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3C-Silicon Carbide Microresonators for Timing and Frequency Reference.
    Wood GS; Sviličić B; Mastropaolo E; Cheung R
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of topological wireless power transfer.
    Zhang L; Yang Y; Jiang Z; Chen Q; Yan Q; Wu Z; Zhang B; Huangfu J; Chen H
    Sci Bull (Beijing); 2021 May; 66(10):974-980. PubMed ID: 36654254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuum-sealed silicon photonic MEMS tunable ring resonator with an independent control over coupling and phase.
    Edinger P; Jo G; Van Nguyen CP; Takabayashi AY; Errando-Herranz C; Antony C; Talli G; Verheyen P; Khan U; Bleiker SJ; Bogaerts W; Quack N; Niklaus F; Gylfason KB
    Opt Express; 2023 Feb; 31(4):6540-6551. PubMed ID: 36823907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Functional Hydrogel-Interlayer RF/NFC Resonators as a Versatile Platform for Passive and Wireless Biosensing.
    Dautta M; Alshetaiwi M; Escobar A; Torres F; Bernardo N; Tseng P
    Adv Electron Mater; 2020 Apr; 6(4):. PubMed ID: 35309257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless Power Transmission with Uniform Power Delivery in the 3D Space of the Human Body using Resonators in Parallel.
    Saha R; Roy Joy B; Mirbozorgi SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7268-7271. PubMed ID: 34892776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator.
    Mahboob I; Perrissin N; Nishiguchi K; Hatanaka D; Okazaki Y; Fujiwara A; Yamaguchi H
    Nano Lett; 2015 Apr; 15(4):2312-7. PubMed ID: 25751406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wirelessly Powered Signal Regeneration to Improve the Remote Detectability of an Inductive Pressure Sensor.
    Qian W; Qian C
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1011-1020. PubMed ID: 31352353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart Hydrogel Micromechanical Resonators with Ultrasound Readout for Biomedical Sensing.
    Farhoudi N; Leu HY; Laurentius LB; Magda JJ; Solzbacher F; Reiche CF
    ACS Sens; 2020 Jul; 5(7):1882-1889. PubMed ID: 32545953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Near-Field Radiative Heat Transfer at Deep Sub-Wavelength Distances using Nanomechanical Resonators.
    Giroux M; Stephan M; Brazeau M; Molesky S; Rodriguez AW; Krich JJ; Hinzer K; St-Gelais R
    Nano Lett; 2023 Sep; 23(18):8490-8497. PubMed ID: 37671916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Recent Progress of MEMS/NEMS Resonators.
    Wei L; Kuai X; Bao Y; Wei J; Yang L; Song P; Zhang M; Yang F; Wang X
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34205469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote Modular Electronics for Wireless Magnetic Devices.
    Boyvat M; Sitti M
    Adv Sci (Weinh); 2021 Sep; 8(17):e2101198. PubMed ID: 34245126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.