BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31057849)

  • 21. Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels.
    Paiè P; Bragheri F; Vazquez RM; Osellame R
    Lab Chip; 2014 Jun; 14(11):1826-33. PubMed ID: 24740611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Femtosecond Laser Assisted 3D Etching Using Inorganic-Organic Etchant.
    Butkutė A; Merkininkaitė G; Jurkšas T; Stančikas J; Baravykas T; Vargalis R; Tičkūnas T; Bachmann J; Šakirzanovas S; Sirutkaitis V; Jonušauskas L
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semi-transparent 3D microelectrodes buried in fused silica for photonics applications.
    Guduru SSK; Bucella SG; Bonfadini S; Vishnubhatla KC; Caironi M; Criante L
    Opt Express; 2021 Aug; 29(17):27149-27159. PubMed ID: 34615136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic electro-sonoporation: a multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave.
    Longsine-Parker W; Wang H; Koo C; Kim J; Kim B; Jayaraman A; Han A
    Lab Chip; 2013 Jun; 13(11):2144-52. PubMed ID: 23615834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective metallization on insulator surfaces with femtosecond laser pulses.
    Xu J; Liao Y; Zeng H; Zhou Z; Sun H; Song J; Wang X; Cheng Y; Xu Z; Sugioka K; Midorikawa K
    Opt Express; 2007 Oct; 15(20):12743-8. PubMed ID: 19550542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-pulse writing of a concave microlens array.
    Cao XW; Chen QD; Zhang L; Tian ZN; Li QK; Wang L; Juodkazis S; Sun HB
    Opt Lett; 2018 Feb; 43(4):831-834. PubMed ID: 29444005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels.
    Ozasa K; Lee J; Song S; Hara M; Maeda M
    Lab Chip; 2011 Jun; 11(11):1933-40. PubMed ID: 21491041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains.
    Liu W; Jiang L; Han W; Hu J; Li X; Huang J; Zhan S; Lu Y
    Opt Express; 2019 Apr; 27(7):9782-9793. PubMed ID: 31045127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle focusing by 3D inertial microfluidics.
    Paiè P; Bragheri F; Di Carlo D; Osellame R
    Microsyst Nanoeng; 2017; 3():17027. PubMed ID: 31057868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of infrared laser damage to the Euglena photoreceptor on the control of flagellar motility.
    Nichols KM; Rikmenspoel R
    Cell Motil; 1982; 2(6):573-82. PubMed ID: 7168846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel.
    Maselli V; Grenier JR; Ho S; Herman PR
    Opt Express; 2009 Jul; 17(14):11719-29. PubMed ID: 19582086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bonding Strength of a Glass Microfluidic Device Fabricated by Femtosecond Laser Micromachining and Direct Welding.
    Kim S; Kim J; Joung YH; Choi J; Koo C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30513880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Underwater Transparent Miniature "Mechanical Hand" Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation.
    Huo J; Yang Q; Chen F; Yong J; Fang Y; Zhang J; Liu L; Hou X
    Langmuir; 2017 Apr; 33(15):3659-3665. PubMed ID: 28316243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications.
    Tičkūnas T; Perrenoud M; Butkus S; Gadonas R; Rekštytė S; Malinauskas M; Paipulas D; Bellouard Y; Sirutkaitis V
    Opt Express; 2017 Oct; 25(21):26280-26288. PubMed ID: 29041286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Femtosecond laser-assisted three-dimensional microfabrication in silica.
    Marcinkevi Ius A; Juodkazis S; Watanabe M; Miwa M; Matsuo S; Misawa H; Nishii J
    Opt Lett; 2001 Mar; 26(5):277-9. PubMed ID: 18040300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
    Liao Y; Song J; Li E; Luo Y; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K
    Lab Chip; 2012 Feb; 12(4):746-9. PubMed ID: 22231027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems.
    Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 May; 11(10):1740-6. PubMed ID: 21451820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.