These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31057849)

  • 41. Silicon three-dimensional structures fabricated by femtosecond laser modification with dry etching.
    Liu XQ; Yu L; Ma ZC; Chen QD
    Appl Opt; 2017 Mar; 56(8):2157-2161. PubMed ID: 28375300
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis.
    Hader DP
    Arch Microbiol; 1987 Mar; 147(2):179-83. PubMed ID: 11536573
    [TBL] [Abstract][Full Text] [Related]  

  • 43. One-Stage Femtosecond Laser-Assisted Deposition of Gold Micropatterns on Dielectric Substrate.
    Lipateva T; Lipatiev A; Lotarev S; Shakhgildyan G; Fedotov S; Sigaev V
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234209
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Peculiarities of Integrating Mechanical Valves in Microfluidic Channels Using Direct Laser Writing.
    Hernandez-Cedillo L; Andriukaitis D; Šerpytis L; Drevinskas T; Kornyšova O; Kaškonienė V; Stankevičius M; Bimbiraitė-Survilienė K; Maruška AS; Jonušauskas L
    Appl Bionics Biomech; 2022; 2022():9411024. PubMed ID: 36245929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Microfluidic Mixer of High Throughput Fabricated in Glass Using Femtosecond Laser Micromachining Combined with Glass Bonding.
    Qi J; Li W; Chu W; Yu J; Wu M; Liang Y; Yin D; Wang P; Wang Z; Wang M; Cheng Y
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Femtosecond laser micromachining of fused silica molds.
    Madani-Grasset F; Bellouard Y
    Opt Express; 2010 Oct; 18(21):21826-40. PubMed ID: 20941083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors.
    Noh JH; Noh J; Kreit E; Heikenfeld J; Rack PD
    Lab Chip; 2012 Jan; 12(2):353-60. PubMed ID: 22134753
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gravitaxis in Euglena.
    Häder DP; Hemmersbach R
    Adv Exp Med Biol; 2017; 979():237-266. PubMed ID: 28429325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple Isolation of Single Cell: Thin Glass Microfluidic Device for Observation of Isolated Single Euglena gracilis Cells.
    Ota N; Yalikun Y; Tanaka N; Shen Y; Aishan Y; Nagahama Y; Oikawa M; Tanaka Y
    Anal Sci; 2019 May; 35(5):577-583. PubMed ID: 30686796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity.
    Li G; Li J; Zhang C; Hu Y; Li X; Chu J; Huang W; Wu D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):383-90. PubMed ID: 25473879
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spiral Microchannels with Trapezoidal Cross Section Fabricated by Femtosecond Laser Ablation in Glass for the Inertial Separation of Microparticles.
    Al-Halhouli A; Al-Faqheri W; Alhamarneh B; Hecht L; Dietzel A
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser.
    Liao Y; Xu J; Cheng Y; Zhou Z; He F; Sun H; Song J; Wang X; Xu Z; Sugioka K; Midorikawa K
    Opt Lett; 2008 Oct; 33(19):2281-3. PubMed ID: 18830378
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control.
    Zhao M; Hu J; Jiang L; Zhang K; Liu P; Lu Y
    Sci Rep; 2015 Aug; 5():13202. PubMed ID: 26307148
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond laser processing.
    Yalikun Y; Hosokawa Y; Iino T; Tanaka Y
    Lab Chip; 2016 Jul; 16(13):2427-33. PubMed ID: 27225521
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controllable Fabrication of Functional Microhelices with Droplet Microfluidics.
    Cai QW; Ju XJ; Zhang SY; Chen ZH; Hu JQ; Zhang LP; Xie R; Wang W; Liu Z; Chu LY
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46241-46250. PubMed ID: 31739661
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Maskless 3D Ablation of Precise Microhole Structures in Plastics Using Femtosecond Laser Pulses.
    Liao C; Anderson W; Antaw F; Trau M
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4315-4323. PubMed ID: 29313352
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds.
    Ghezzi D; Vazquez RM; Osellame R; Valtorta F; Pedrocchi A; Valle GD; Ramponi R; Ferrigno G; Cerullo G
    Sensors (Basel); 2008 Oct; 8(10):6595-6604. PubMed ID: 27873888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser.
    He F; Cheng Y; Xu Z; Liao Y; Xu J; Sun H; Wang C; Zhou Z; Sugioka K; Midorikawa K; Xu Y; Chen X
    Opt Lett; 2010 Feb; 35(3):282-4. PubMed ID: 20125695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.