These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 31057852)

  • 21. Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis.
    Morikawa K; Ohta R; Mawatari K; Kitamori T
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
    Wu J; Chantiwas R; Amirsadeghi A; Soper SA; Park S
    Lab Chip; 2011 Sep; 11(17):2984-9. PubMed ID: 21779601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid filling method for nanofluidic channels utilizing the high solubility of CO2.
    Tamaki E; Hibara A; Kim HB; Tokeshi M; Ooi T; Nakao M; Kitamori T
    Anal Sci; 2006 Apr; 22(4):529-32. PubMed ID: 16760592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of two dimensional polyethylene terephthalate nanofluidic chip using hot embossing and thermal bonding technique.
    Yin Z; Cheng E; Zou H; Chen L; Xu S
    Biomicrofluidics; 2014 Nov; 8(6):066503. PubMed ID: 25553203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma.
    Kim SH; Cui Y; Lee MJ; Nam SW; Oh D; Kang SH; Kim YS; Park S
    Lab Chip; 2011 Jan; 11(2):348-53. PubMed ID: 20957251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering inlet structures to enhance DNA capture into nanochannels in a polymer nanofluidic device produced via nanoimprint lithography.
    Wu J; Choi J; Uba FI; Soper SA; Park S
    Micro Nano Eng; 2023 Dec; 21():. PubMed ID: 38737190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels.
    Amarasekara CA; Rathnayaka C; Athapattu US; Zhang L; Choi J; Park S; Nagel AC; Soper SA
    J Chromatogr A; 2021 Feb; 1638():461892. PubMed ID: 33477027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates.
    Chu KS; Kim S; Chung H; Oh JH; Seong TY; An BH; Kim YK; Park JH; Do YR; Kim W
    Nanotechnology; 2010 Oct; 21(42):425302. PubMed ID: 20864783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication.
    Hu H; Zhuo Y; Oruc ME; Cunningham BT; King WP
    Nanotechnology; 2014 Nov; 25(45):455301. PubMed ID: 25327873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of nanochannels by anisotropic wet etching on silicon-on-insulator wafers and their application to DNA stretch.
    Kim SK; Cho H; Park HK; Kim JH; Chung BH
    J Nanosci Nanotechnol; 2010 Jan; 10(1):637-42. PubMed ID: 20352904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices.
    Esmek FM; Erichlandwehr T; Brkovic N; Pranzner NP; Teuber JP; Fernandez-Cuesta I
    Nanotechnology; 2022 Jul; 33(38):. PubMed ID: 35696945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical nondestructive dynamic measurements of wafer-scale encapsulated nanofluidic channels.
    Liberman V; Smith M; Weaver I; Rothschild M
    Appl Opt; 2018 May; 57(15):4337-4344. PubMed ID: 29791411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polycarbonate Nanofluidic Chip Fabrication Technique by Hot Embossing and Thermal Bonding.
    Yin Z; Zou H; Sun L
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2530-2535. PubMed ID: 29442923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microchannel refill: a new method for fabricating 2D nanochannels in polymer substrates.
    Li JM; Liu C; Ke X; Xu Z; Duan YJ; Fan Y; Li M; Zhang KP; Wang LD
    Lab Chip; 2012 Oct; 12(20):4059-62. PubMed ID: 22941049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.
    Mao P; Han J
    Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanofluidic devices and their applications.
    Abgrall P; Nguyen NT
    Anal Chem; 2008 Apr; 80(7):2326-41. PubMed ID: 18321133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-lithographic nanofluidic channels with precisely controlled circular cross sections.
    Park YS; Oh JM; Cho YK
    RSC Adv; 2018 May; 8(35):19651-19658. PubMed ID: 35540964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.
    Uba FI; Hu B; Weerakoon-Ratnayake K; Oliver-Calixte N; Soper SA
    Lab Chip; 2015 Feb; 15(4):1038-49. PubMed ID: 25511610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using Laser Interference Lithography in the Fabrication of a Simplified Micro- and Nanofluidic Device for Label-free Detection.
    Ajiri T; Kasa H; Maeki M; Ishida A; Tani H; Nishii J; Tokeshi M
    Anal Sci; 2017; 33(10):1197-1199. PubMed ID: 28993597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.