BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31057854)

  • 1. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition.
    Trantidou T; Elani Y; Parsons E; Ces O
    Microsyst Nanoeng; 2017; 3():16091. PubMed ID: 31057854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production.
    Feng C; Takahashi K; Zhu J
    Front Bioeng Biotechnol; 2022; 10():891213. PubMed ID: 35519623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alignment-free construction of double emulsion droplet generation devices incorporating surface wettability contrast.
    Aslan Y; McGleish O; Reboud J; Cooper JM
    Lab Chip; 2023 Dec; 23(24):5173-5179. PubMed ID: 37966340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of double emulsion micro-droplets in a microfluidic device using a partially hydrophilic-hydrophobic surface.
    Kamnerdsook A; Juntasaro E; Khemthongcharoen N; Chanasakulniyom M; Sripumkhai W; Pattamang P; Promptmas C; Atthi N; Jeamsaksiri W
    RSC Adv; 2021 Oct; 11(56):35653-35662. PubMed ID: 35493190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications.
    Li L; Yan Z; Jin M; You X; Xie S; Liu Z; van den Berg A; Eijkel JCT; Shui L
    ACS Appl Mater Interfaces; 2019 May; 11(18):16934-16943. PubMed ID: 30983312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions.
    Bauer WA; Fischlechner M; Abell C; Huck WT
    Lab Chip; 2010 Jul; 10(14):1814-9. PubMed ID: 20442967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydimethylsiloxane Surface Modification of Microfluidic Devices for Blood Plasma Separation.
    Gonçalves M; Gonçalves IM; Borges J; Faustino V; Soares D; Vaz F; Minas G; Lima R; Pinho D
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.
    Kobayashi T; Shimizu K; Kaizuma Y; Konishi S
    Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers.
    Warr CA; Hinnen HS; Avery S; Cate RJ; Nordin GP; Pitt WG
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions.
    Deng NN; Meng ZJ; Xie R; Ju XJ; Mou CL; Wang W; Chu LY
    Lab Chip; 2011 Dec; 11(23):3963-9. PubMed ID: 22025190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin).
    Luo X; Zhou Y; Bai L; Liu F; Zhang R; Zhang Z; Zheng B; Deng Y; McClements DJ
    Food Res Int; 2017 Jun; 96():103-112. PubMed ID: 28528089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid-Stabilized Double Emulsions Generated in Planar Microfluidic Devices.
    Kong L; Levin A; Toprakcioglu Z; Xu Y; Gang H; Ye R; Mu BZ; Knowles TPJ
    Langmuir; 2020 Mar; 36(9):2349-2356. PubMed ID: 32045250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of the glass surface property in PDMS-glass hybrid microfluidic devices.
    Kaneda S; Ono K; Fukuba T; Nojima T; Yamamoto T; Fujii T
    Anal Sci; 2012; 28(1):39-44. PubMed ID: 22232222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Ogo A; Okayama S; Nakatani M; Hashimoto M
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Formation of Oil-in-Water (O/W) and Water-in-Oil-in-Water (W/O/W) Droplets in PDMS Device Using Protrusion Channel without Hydrophilic Surface Treatment.
    Yoon DH; Tanaka D; Sekiguchi T; Shoji S
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.