BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31057854)

  • 21. Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems.
    Barbier V; Tatoulian M; Li H; Arefi-Khonsari F; Ajdari A; Tabeling P
    Langmuir; 2006 Jun; 22(12):5230-2. PubMed ID: 16732644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patterning Wettability on Solvent-Resistant Elastomers with High Spatial Resolution for Replica Mold Fabrication of Droplet Microfluidics.
    Wu J; Issadore DA; Lee D
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis.
    Vickers JA; Caulum MM; Henry CS
    Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of chitin nanofiber-PDMS composite aerogels from Pickering emulsion templates with potential application in hydrophobic organic contaminant removal.
    Huang Y; Sun Y; Liu H
    J Hazard Mater; 2021 Oct; 419():126475. PubMed ID: 34323711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic formation of highly monodispersed multiple cored droplets using needle-based system in parallel mode.
    Lian Z; Chan Y; Luo Y; Yang X; Koh KS; Wang J; Chen GZ; Ren Y; He J
    Electrophoresis; 2020 Jun; 41(10-11):891-901. PubMed ID: 31998972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of polydimethylsiloxane by the cataractous eye protein isolate.
    Parveen S; Basu M; Chowdhury P; Dhara T; DasGupta S; Das S; Dasgupta S
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129470. PubMed ID: 38237817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable Production of Monodisperse Functional Microspheres by Multilayer Parallelization of High Aspect Ratio Microfluidic Channels.
    Chung CHY; Cui B; Song R; Liu X; Xu X; Yao S
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31509956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel.
    Tan SH; Nguyen NT; Chua YC; Kang TG
    Biomicrofluidics; 2010 Sep; 4(3):32204. PubMed ID: 21045926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Universal Plasma Jet for Droplet Manipulation on a PDMS Surface towards Wall-Less Scaffolds.
    Peng CY; Tsai CD
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailored Fluorosurfactants through Controlled/Living Radical Polymerization for Highly Stable Microfluidic Droplet Generation.
    Li X; Tang SY; Zhang Y; Zhu J; Forgham H; Zhao CX; Zhang C; Davis TP; Qiao R
    Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202315552. PubMed ID: 38038248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glass Microdroplet Generator for Lipid-Based Double Emulsion Production.
    Zizzari A; Arima V
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studying the real-time interplay between triglyceride digestion and lipophilic micronutrient bioaccessibility using droplet microfluidics. 1 lab on a chip method.
    Nguyen HT; Marquis M; Anton M; Marze S
    Food Chem; 2019 Mar; 275():523-529. PubMed ID: 30724229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Permanent superhydrophilic surface modification in microporous polydimethylsiloxane sponge for multi-functional applications.
    Bakshi S; Pandey K; Bose S; Gunjan ; Paul D; Nayak R
    J Colloid Interface Sci; 2019 Sep; 552():34-42. PubMed ID: 31102847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simplified PDMS microfluidic device with a built-in suction actuator for rapid production of monodisperse water-in-oil droplets.
    Nakatani M; Tanaka Y; Okayama S; Hashimoto M
    Electrophoresis; 2020 Sep; ():. PubMed ID: 32920836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallelization of Microfluidic Droplet Junctions for Ultraviscous Fluids.
    Kim HH; Cho Y; Baek D; Rho KH; Park SH; Lee S
    Small; 2022 Dec; 18(48):e2205001. PubMed ID: 36310131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices.
    Okushima S; Nisisako T; Torii T; Higuchi T
    Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.