BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31057854)

  • 41. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing.
    Alzobaidi S; Lee J; Jiries S; Da C; Harris J; Keene K; Rodriguez G; Beckman E; Perry R; Johnston KP; Enick R
    J Colloid Interface Sci; 2018 Sep; 526():253-267. PubMed ID: 29747039
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigating the effect of phospholipids on droplet formation and surface property evolution in microfluidic devices for droplet interface bilayer (DIB) formation.
    Stephenson EB; García Ramírez R; Farley S; Adolph-Hammond K; Lee G; Frostad JM; Elvira KS
    Biomicrofluidics; 2022 Jul; 16(4):044112. PubMed ID: 36035888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tailored Double Emulsions Made Simple.
    Wang J; Hahn S; Amstad E; Vogel N
    Adv Mater; 2022 Feb; 34(5):e2107338. PubMed ID: 34706112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Convenient microfluidic cartridge for single-molecule droplet PCR using common laboratory equipment.
    Takahara H; Matsushita H; Inui E; Ochiai M; Hashimoto M
    Anal Methods; 2021 Mar; 13(8):974-985. PubMed ID: 33533381
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Versatile Tool for Droplet Generation in Standard Reaction Tubes by Centrifugal Step Emulsification.
    Schulz M; Probst S; Calabrese S; R Homann A; Borst N; Weiss M; von Stetten F; Zengerle R; Paust N
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface Modification of Cyclic-Olefin-Copolymer (COC)-Based Microchannels for the Large-Scale Industrial Production of Droplet Microfluidic Devices.
    Guan Y; Zhang H; Yan Z; Wei X; Zhang Z; Chen X
    Bioengineering (Basel); 2023 Jun; 10(7):. PubMed ID: 37508790
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid, Simple, and Inexpensive Spatial Patterning of Wettability in Microfluidic Devices for Double Emulsion Generation.
    Liu H; Piper JA; Li M
    Anal Chem; 2021 Aug; 93(31):10955-10965. PubMed ID: 34323465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR.
    Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M
    Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type.
    Bianchi JRO; de la Torre LG; Costa ALR
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces.
    Chen IJ; Lindner E
    Langmuir; 2007 Mar; 23(6):3118-22. PubMed ID: 17279784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation.
    Ji H; Lee J; Park J; Kim J; Kim HS; Cho Y
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Key factors for stable retention of fluorophores and labeled biomolecules in droplet-based microfluidics.
    Janiesch JW; Weiss M; Kannenberg G; Hannabuss J; Surrey T; Platzman I; Spatz JP
    Anal Chem; 2015 Feb; 87(4):2063-7. PubMed ID: 25607822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of Perfluoropolyether Microfluidic Devices Using Laser Engraving for Uniform Droplet Production.
    Kim ES; Cho M; Choi I; Choi SW
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On-site formation of emulsions by controlled air plugs.
    Huang X; Hui W; Hao C; Yue W; Yang M; Cui Y; Wang Z
    Small; 2014 Feb; 10(4):758-65. PubMed ID: 24030982
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Partitioning of Small Hydrophobic Molecules into Polydimethylsiloxane in Microfluidic Analytical Devices.
    Rodrigues PM; Xavier M; Calero V; Pastrana L; Gonçalves C
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630180
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust Formation of an Epithelial Layer of Human Intestinal Organoids in a Polydimethylsiloxane-Based Gut-on-a-Chip Microdevice.
    Shin W; Ambrosini YM; Shin YC; Wu A; Min S; Koh D; Park S; Kim S; Koh H; Kim HJ
    Front Med Technol; 2020 Aug; 2():. PubMed ID: 33532747
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip.
    Kim SJ; Song YA; Skipper PL; Han J
    Anal Chem; 2006 Dec; 78(23):8011-9. PubMed ID: 17134134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.