These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31057871)

  • 1. Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial.
    Liu M; Susli M; Silva D; Putrino G; Kala H; Fan S; Cole M; Faraone L; Wallace VP; Padilla WJ; Powell DA; Shadrivov IV; Martyniuk M
    Microsyst Nanoeng; 2017; 3():17033. PubMed ID: 31057871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Fabrication of Millimeter-Wave Frequency-Tunable Metamaterial Absorber Using MEMS Cantilever Actuators.
    Chung M; Jeong H; Kim YK; Lim S; Baek CW
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanadium Dioxide-Based Terahertz Metamaterial Devices Switchable between Transmission and Absorption.
    Jiang H; Wang Y; Cui Z; Zhang X; Zhu Y; Zhang K
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Voltage-Tuned Terahertz Absorber Based on MoS
    Samy O; Belmoubarik M; Otsuji T; El Moutaouakil A
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-supported tunable bidirectional terahertz metamaterials absorbers.
    Peng J; Leng J; Cao D; He X; Lin F; Liu F
    Appl Opt; 2021 Aug; 60(22):6520-6525. PubMed ID: 34612889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation, fabrication and characterization of THz metamaterial absorbers.
    Grant JP; McCrindle IJ; Cumming DR
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realization of absorption, filtering, and sensing in a single metamaterial structure combined with functional materials.
    Feng QY; Yan DX; Li XJ; Li JN
    Appl Opt; 2022 May; 61(15):4336-4343. PubMed ID: 36256270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial.
    Ning J; Chen K; Zhao W; Zhao J; Jiang T; Feng Y
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-dependent and tunable absorption of terahertz waves based on anisotropic metasurfaces.
    Li J; Zheng C; Li J; Zhao H; Hao X; Xu H; Yue Z; Zhang Y; Yao J
    Opt Express; 2021 Feb; 29(3):3284-3295. PubMed ID: 33770930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penrose tiling-inspired graphene-covered multiband terahertz metamaterial absorbers.
    Didari-Bader A; Saghaei H
    Opt Express; 2023 Apr; 31(8):12653-12668. PubMed ID: 37157421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator.
    Han Z; Kohno K; Fujita H; Hirakawa K; Toshiyoshi H
    Opt Express; 2014 Sep; 22(18):21326-39. PubMed ID: 25321511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications.
    Xu C; Ren Z; Wei J; Lee C
    iScience; 2022 Feb; 25(2):103799. PubMed ID: 35198867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application.
    Lai WH; Li B; Fu SH; Lin YS
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene.
    Li J; Liu Y; Chen Y; Chen W; Guo H; Wu Q; Li M
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials.
    Feng H; Xu Z; Li K; Wang M; Xie W; Luo Q; Chen B; Kong W; Yun M
    Opt Express; 2021 Mar; 29(5):7158-7167. PubMed ID: 33726222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Broadband Terahertz Waveband Absorbers Based on Fractal Technology of Graphene Metamaterial.
    Xie T; Chen D; Yang H; Xu Y; Zhang Z; Yang J
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tunable Terahertz Absorber Based on Double-Layer Patterned Graphene Metamaterials.
    Tang X; Jia H; Liu L; Li M; Wu D; Zhou K; Li P; Tian L; Yang D; Wang W
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.