These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31057875)

  • 21. Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection.
    Ozhikandathil J; Packirisamy M
    J Biomed Opt; 2012 Jan; 17(1):017006. PubMed ID: 22352672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low cost integration of 3D-electrode structures into microfluidic devices by replica molding.
    Mustin B; Stoeber B
    Lab Chip; 2012 Nov; 12(22):4702-8. PubMed ID: 23007263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues.
    Zhou Z; Chen D; Wang X; Jiang J
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes.
    Sonney S; Shek N; Moran-Mirabal JM
    Biomicrofluidics; 2015 Mar; 9(2):026501. PubMed ID: 25945145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon.
    Dumais P; Callender CL; Ledderhof CJ; Noad JP
    Appl Opt; 2006 Dec; 45(36):9182-90. PubMed ID: 17151758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels.
    Parekh DP; Ladd C; Panich L; Moussa K; Dickey MD
    Lab Chip; 2016 May; 16(10):1812-20. PubMed ID: 27025537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval.
    Jiang B; White A; Ou W; Van Belleghem S; Stewart S; Shamul JG; Rahaman SO; Fisher JP; He X
    Bioact Mater; 2022 Oct; 16():346-358. PubMed ID: 35386332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A handy liquid metal based electroosmotic flow pump.
    Gao M; Gui L
    Lab Chip; 2014 Jun; 14(11):1866-72. PubMed ID: 24706096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wafer-Scale Microwire Transistor Array Fabricated via Evaporative Assembly.
    Park JH; Sun Q; Choi Y; Lee S; Lee DY; Kim YH; Cho JH
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15543-50. PubMed ID: 27228025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper-Electroplating-Modified Liquid Metal Microfluidic Electrodes.
    Gong J; Liu B; Zhang P; Zhang H; Gui L
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microchannels filled with diverse micro- and nanostructures fabricated by glancing angle deposition.
    Bezuidenhout LW; Nazemifard N; Jemere AB; Harrison DJ; Brett MJ
    Lab Chip; 2011 May; 11(9):1671-8. PubMed ID: 21445412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid and inexpensive method for the simple fabrication of PDMS-based electrochemical sensors for detection in microfluidic devices.
    da Silva ENT; Ferreira VS; Lucca BG
    Electrophoresis; 2019 May; 40(9):1322-1330. PubMed ID: 30657598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple and sensitive electrode design for microchip electrophoresis/electrochemistry.
    Liu Y; Vickers JA; Henry CS
    Anal Chem; 2004 Mar; 76(5):1513-7. PubMed ID: 14987111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High yield fabrication of multilayer polydimethylsiloxane [corrected] devices with freestanding micropillar arrays.
    Gregory CW; Sellgren KL; Gilchrist KH; Grego S
    Biomicrofluidics; 2013; 7(5):56503. PubMed ID: 24396532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Lateral Flow Device for Flow Control with Blood Separation and Biosensing.
    Betancur V; Sun J; Wu N; Liu Y
    Micromachines (Basel); 2017; 8(12):. PubMed ID: 30345108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening.
    Tang Q; Li X; Lai C; Li L; Wu H; Wang Y; Shi X
    Bioact Mater; 2021 Jan; 6(1):169-178. PubMed ID: 32913926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns.
    Gou HL; Xu JJ; Xia XH; Chen HY
    ACS Appl Mater Interfaces; 2010 May; 2(5):1324-30. PubMed ID: 20402458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.