These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31057876)

  • 1. Design and fabrication of crack-junctions.
    Dubois V; Niklaus F; Stemme G
    Microsyst Nanoeng; 2017; 3():17042. PubMed ID: 31057876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices.
    Dubois V; Raja SN; Gehring P; Caneva S; van der Zant HSJ; Niklaus F; Stemme G
    Nat Commun; 2018 Aug; 9(1):3433. PubMed ID: 30143636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Manufacturing of Nanogaps.
    Dubois V; Bleiker SJ; Stemme G; Niklaus F
    Adv Mater; 2018 Nov; 30(46):e1801124. PubMed ID: 30156331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Batch-Fabricated α-Si Assisted Nanogap Tunneling Junctions.
    Banerjee A; Khan SH; Broadbent S; Likhite R; Looper R; Kim H; Mastrangelo CH
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31083457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanolithography using thermal stresses.
    Purohit G; Deepak ; Katiyar M
    RSC Adv; 2018 Jan; 8(9):4928-4936. PubMed ID: 35539559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge-Trimmed Nanogaps in 2D Materials for Robust, Scalable, and Tunable Lateral Tunnel Junctions.
    Nguyen HT; Nguyen Y; Su YH; Hsieh YP; Hofmann M
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33920302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers.
    Jeong HH; Adams MC; Günther JP; Alarcón-Correa M; Kim I; Choi E; Miksch C; Mark AF; Mark AG; Fischer P
    ACS Nano; 2019 Oct; 13(10):11453-11459. PubMed ID: 31539228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
    Barik A; Chen X; Oh SH
    Nano Lett; 2016 Oct; 16(10):6317-6324. PubMed ID: 27602796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High precision fabrication and positioning of nanoelectrodes in a nanopore.
    Ivanov AP; Freedman KJ; Kim MJ; Albrecht T; Edel JB
    ACS Nano; 2014 Feb; 8(2):1940-8. PubMed ID: 24446951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1-2 nm by focused ion beam milling.
    Cui A; Liu Z; Dong H; Wang Y; Zhen Y; Li W; Li J; Gu C; Hu W
    Adv Mater; 2015 May; 27(19):3002-6. PubMed ID: 25854513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level.
    Luo S; Hoff BH; Maier SA; de Mello JC
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102756. PubMed ID: 34719889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review.
    Adam T; Dhahi TS; Gopinath SCB; Hashim U; Uda MNA
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1395-1417. PubMed ID: 34143905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level.
    Luo S; Mancini A; Berté R; Hoff BH; Maier SA; de Mello JC
    Adv Mater; 2021 May; 33(20):e2100491. PubMed ID: 33939199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures.
    Kim I; Mun J; Hwang W; Yang Y; Rho J
    Microsyst Nanoeng; 2020; 6():65. PubMed ID: 34567676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wet chemical synthesis of soluble gold nanogaps.
    Jain T; Tang Q; Bjørnholm T; Nørgaard K
    Acc Chem Res; 2014 Jan; 47(1):2-11. PubMed ID: 23944385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration.
    Gee A; Jaafar AH; Kemp NT
    Nanotechnology; 2020 Apr; 31(15):155203. PubMed ID: 31860883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cracking-assisted fabrication of nanoscale patterns for micro/nanotechnological applications.
    Kim M; Kim DJ; Ha D; Kim T
    Nanoscale; 2016 May; 8(18):9461-79. PubMed ID: 26691345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress Release Effect of Micro-hole Arrays for Flexible Electrodes and Thin Film Transistors.
    Lee GJ; Heo SJ; Lee S; Yang JH; Jun BO; Kim HS; Jang JE
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19226-19234. PubMed ID: 32237721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode.
    Chung YH; Lee T; Park HJ; Yun WS; Min J; Choi JW
    Nanotechnology; 2013 Sep; 24(36):365301. PubMed ID: 23942185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.